Genetics of type 2 diabetes: pathophysiologic and clinical relevance

Eur J Clin Invest 2011; 41 (6): 679–692

[1]  V. Basevi Diagnosis and Classification of Diabetes Mellitus , 2011, Diabetes Care.

[2]  Christian Gieger,et al.  Common Variants at 10 Genomic Loci Influence Hemoglobin A1C Levels via Glycemic and Nonglycemic Pathways , 2010, Diabetes.

[3]  M. Roden,et al.  Mitochondrial Function and Insulin Resistance during Aging – A Mini-Review , 2010, Gerontology.

[4]  M. Laakso,et al.  Identification of undiagnosed type 2 diabetic individuals by the finnish diabetes risk score and biochemical and genetic markers: a population-based study of 7232 Finnish men. , 2010, The Journal of clinical endocrinology and metabolism.

[5]  Joseph T. Glessner,et al.  Large Copy-Number Variations Are Enriched in Cases With Moderate to Extreme Obesity , 2010, Diabetes.

[6]  Teri A Manolio,et al.  Genomewide association studies and assessment of the risk of disease. , 2010, The New England journal of medicine.

[7]  G. Gibson Hints of hidden heritability in GWAS , 2010, Nature Genetics.

[8]  P. Visscher,et al.  Common SNPs explain a large proportion of heritability for human height , 2011 .

[9]  Ayellet V. Segrè,et al.  Twelve type 2 diabetes susceptibility loci identified through large-scale association analysis , 2010, Nature Genetics.

[10]  P. Franks,et al.  Evaluating the discriminative power of multi-trait genetic risk scores for type 2 diabetes in a northern Swedish population , 2010, Diabetologia.

[11]  F. Hu,et al.  Combined effects of 17 common genetic variants on type 2 diabetes risk in a Han Chinese population , 2010, Diabetologia.

[12]  Marc S. Orr,et al.  Erratum: New genetic loci implicated in fasting glucose homeostasis and their impact on type 2 diabetes risk (Nature Genetics (2010) 42 (105-116)) , 2010 .

[13]  L. Groop,et al.  Evidence that BMI and type 2 diabetes share only a minor fraction of genetic variance: a follow-up study of 23,585 monozygotic and dizygotic twins from the Finnish Twin Cohort Study , 2010, Diabetologia.

[14]  R. DeFronzo Insulin resistance, lipotoxicity, type 2 diabetes and atherosclerosis: the missing links. The Claude Bernard Lecture 2009 , 2010, Diabetologia.

[15]  N. Samani,et al.  Genetics of myocardial infarction: a progress report. , 2010, European heart journal.

[16]  A. Attie,et al.  Getting biological about the genetics of diabetes , 2010, Nature Medicine.

[17]  K. Dou,et al.  Prevalence of diabetes among men and women in China. , 2010, The New England journal of medicine.

[18]  W. Rathmann,et al.  Association of genetic variation in KCNQ1 with type 2 diabetes in the KORA surveys. , 2010, Hormone and metabolic research = Hormon- und Stoffwechselforschung = Hormones et metabolisme.

[19]  K. S. Vimaleswaran,et al.  Progress in the genetics of common obesity and type 2 diabetes , 2010, Expert Reviews in Molecular Medicine.

[20]  Tamra E. Meyer,et al.  Diabetes Genes and Prostate Cancer in the Atherosclerosis Risk in Communities Study , 2010, Cancer Epidemiology, Biomarkers & Prevention.

[21]  Alex Doney,et al.  Genetic variation in GIPR influences the glucose and insulin responses to an oral glucose challenge , 2010, Nature Genetics.

[22]  Christian Gieger,et al.  New genetic loci implicated in fasting glucose homeostasis and their impact on type 2 diabetes risk , 2010, Nature Genetics.

[23]  S. Humphries,et al.  Utility of genetic and non-genetic risk factors in prediction of type 2 diabetes: Whitehall II prospective cohort study , 2010, BMJ : British Medical Journal.

[24]  P. O S I T I O N S T A T E M E N T,et al.  Diagnosis and Classification of Diabetes Mellitus , 2011, Diabetes Care.

[25]  H. Kolb,et al.  The global diabetes epidemic as a consequence of lifestyle-induced low-grade inflammation , 2010, Diabetologia.

[26]  F. Schick,et al.  Gene Variants of TCF7L2 Influence Weight Loss and Body Composition During Lifestyle Intervention in a Population at Risk for Type 2 Diabetes , 2009, Diabetes.

[27]  Daniel F. Gudbjartsson,et al.  Parental origin of sequence variants associated with complex diseases , 2009, Nature.

[28]  R. Gambino,et al.  Effects of TCF7L2 polymorphisms on glucose values after a lifestyle intervention. , 2009, The American journal of clinical nutrition.

[29]  S. O’Rahilly,et al.  Human genetics illuminates the paths to metabolic disease , 2009, Nature.

[30]  Judy H. Cho,et al.  Finding the missing heritability of complex diseases , 2009, Nature.

[31]  Jean Tichet,et al.  Genetic variant near IRS1 is associated with type 2 diabetes, insulin resistance and hyperinsulinemia , 2009, Nature Genetics.

[32]  M. McCarthy,et al.  Underlying genetic models of inheritance in established type 2 diabetes associations. , 2009, American journal of epidemiology.

[33]  Heiner Boeing,et al.  Use of Multiple Metabolic and Genetic Markers to Improve the Prediction of Type 2 Diabetes: the EPIC-Potsdam Study , 2009, Diabetes Care.

[34]  D. Gudbjartsson,et al.  New common variants affecting susceptibility to basal cell carcinoma , 2009, Nature Genetics.

[35]  J. Malvehy,et al.  Genome-wide association study identifies three loci associated with melanoma risk , 2009, Nature Genetics.

[36]  Jane Worthington,et al.  Differential contribution of CDKAL1 variants to psoriasis, Crohn's disease and type II diabetes , 2009, Genes and Immunity.

[37]  J. Florez,et al.  Genomics of type 2 diabetes mellitus: implications for the clinician , 2009, Nature Reviews Endocrinology.

[38]  J. Florez,et al.  Genetic Architecture of Type 2 Diabetes: Recent Progress and Clinical Implications , 2009, Diabetes Care.

[39]  Laura J. Scott,et al.  Edinburgh Research Explorer Genome-wide association scan meta-analysis identifies three loci influencing adiposity and fat distribution , 2022 .

[40]  T. Hansen,et al.  Combined analysis of 19 common validated type 2 diabetes susceptibility gene variants shows moderate discriminative value and no evidence of gene–gene interaction , 2009, Diabetologia.

[41]  E. Pearson Translating TCF7L2: from gene to function , 2009, Diabetologia.

[42]  Tianxi Cai,et al.  Joint Effects of Common Genetic Variants on the Risk for Type 2 Diabetes in U.S. Men and Women of European Ancestry , 2009, Annals of Internal Medicine.

[43]  F. Hu,et al.  TCF7L2, dietary carbohydrate, and risk of type 2 diabetes in US women. , 2009, The American journal of clinical nutrition.

[44]  P. Poulsen,et al.  Increased Risk of Type 2 Diabetes in Elderly Twins , 2009, Diabetes.

[45]  L. Groop,et al.  Short-Term Exercise Training Does Not Stimulate Skeletal Muscle ATP Synthesis in Relatives of Humans With Type 2 Diabetes , 2009, Diabetes.

[46]  A. Hofman,et al.  Common variants in the JAZF1 gene associated with height identified by linkage and genome-wide association analysis. , 2009, Human molecular genetics.

[47]  K. Narayan,et al.  Clinical risk factors, DNA variants, and the development of type 2 diabetes. , 2009, The New England journal of medicine.

[48]  P. Elliott,et al.  A variant near MTNR1B is associated with increased fasting plasma glucose levels and type 2 diabetes risk , 2009, Nature Genetics.

[49]  Ellen Kampman,et al.  Genome-wide association yields new sequence variants at seven loci that associate with measures of obesity , 2009, Nature Genetics.

[50]  Christian Gieger,et al.  Six new loci associated with body mass index highlight a neuronal influence on body weight regulation , 2009, Nature Genetics.

[51]  R. Collins,et al.  Common variants at 30 loci contribute to polygenic dyslipidemia , 2009, Nature Genetics.

[52]  Christian Gieger,et al.  Loci influencing lipid levels and coronary heart disease risk in 16 European population cohorts , 2009, Nature Genetics.

[53]  Inês Barroso,et al.  Variants in MTNR1B influence fasting glucose levels , 2009, Nature Genetics.

[54]  L. T. Middleton,et al.  Risk prediction of prevalent diabetes in a Swiss population using a weighted genetic score—the CoLaus Study , 2009, Diabetologia.

[55]  R. D'Agostino,et al.  Genotype score in addition to common risk factors for prediction of type 2 diabetes. , 2008, The New England journal of medicine.

[56]  F. Schick,et al.  SIRT1 genetic variants associate with the metabolic response of Caucasians to a controlled lifestyle intervention – the TULIP Study , 2008, BMC Medical Genetics.

[57]  A. Cecile J.W. Janssens,et al.  Predicting Type 2 Diabetes Based on Polymorphisms From Genome-Wide Association Studies , 2008, Diabetes.

[58]  Mark I. McCarthy,et al.  Assessing the Combined Impact of 18 Common Genetic Variants of Modest Effect Sizes on Type 2 Diabetes Risk , 2008, Diabetes.

[59]  M. Patti,et al.  The emerging genetic architecture of type 2 diabetes. , 2008, Cell metabolism.

[60]  J. Hebebrand,et al.  Evidence for an influence of TCF7L2 polymorphism rs7903146 on insulin resistance and sensitivity indices in overweight children and adolescents during a lifestyle intervention , 2008, International Journal of Obesity.

[61]  J. Komorowski,et al.  Somatic mosaicism for copy number variation in differentiated human tissues , 2008, Human mutation.

[62]  T. Hansen,et al.  SNPs in KCNQ1 are associated with susceptibility to type 2 diabetes in East Asian and European populations , 2008, Nature Genetics.

[63]  L. Groop,et al.  Variants in KCNQ1 are associated with susceptibility to type 2 diabetes mellitus , 2008, Nature Genetics.

[64]  T. Frayling,et al.  A genetic link between type 2 diabetes and prostate cancer , 2008, Diabetologia.

[65]  Judy H. Cho,et al.  Genome-wide association defines more than 30 distinct susceptibility loci for Crohn's disease , 2008, Nature Genetics.

[66]  C. Gieger,et al.  Variants of the PPARG, IGF2BP2, CDKAL1, HHEX, and TCF7L2 Genes Confer Risk of Type 2 Diabetes Independently of BMI in the German KORA Studies , 2008, Hormone and metabolic research = Hormon- und Stoffwechselforschung = Hormones et metabolisme.

[67]  A. Feinberg,et al.  Intra-individual change over time in DNA methylation with familial clustering. , 2008, JAMA.

[68]  W. Bodmer,et al.  Common and rare variants in multifactorial susceptibility to common diseases , 2008, Nature Genetics.

[69]  J. Florez Newly identified loci highlight beta cell dysfunction as a key cause of type 2 diabetes: Where are the insulin resistance genes? , 2008, Diabetologia.

[70]  M. McCarthy,et al.  Meta-analysis of genome-wide association data and large-scale replication identifies additional susceptibility loci for type 2 diabetes , 2008, Nature Genetics.

[71]  T. Manolio,et al.  How to Interpret a Genome-wide Association Study Topic Collections , 2022 .

[72]  W. Willett,et al.  Multiple loci identified in a genome-wide association study of prostate cancer , 2008, Nature Genetics.

[73]  H. Stefánsson,et al.  The same sequence variant on 9p21 associates with myocardial infarction, abdominal aortic aneurysm and intracranial aneurysm , 2008, Nature Genetics.

[74]  J. Florez,et al.  Genetic susceptibility to type 2 diabetes and implications for antidiabetic therapy. , 2008, Annual review of medicine.

[75]  M. McCarthy,et al.  Learning From Molecular Genetics Novel Insights Arising From the Definition of Genes for Monogenic and Type 2 Diabetes , 2008 .

[76]  Jon Cohen DNA Duplications and Deletions Help Determine Health , 2007, Science.

[77]  C. Gieger,et al.  Genomewide association analysis of coronary artery disease. , 2007, The New England journal of medicine.

[78]  D. Gudbjartsson,et al.  Two variants on chromosome 17 confer prostate cancer risk, and the one in TCF2 protects against type 2 diabetes , 2007, Nature Genetics.

[79]  M. McCarthy,et al.  Common variants in WFS1 confer risk of type 2 diabetes , 2007, Nature Genetics.

[80]  Michael Krawczak,et al.  A genome-wide association scan identifies the hepatic cholesterol transporter ABCG8 as a susceptibility factor for human gallstone disease , 2007, Nature Genetics.

[81]  M. McCarthy,et al.  Variation in TCF7L2 Influences Therapeutic Response to Sulfonylureas , 2007, Diabetes.

[82]  Robert A. Hegele,et al.  Copy Number Variation in the Human Genome and Its Implications for Cardiovascular Disease , 2007, Circulation.

[83]  Simon C. Potter,et al.  Genome-wide association study of 14,000 cases of seven common diseases and 3,000 shared controls , 2007, Nature.

[84]  M. McCarthy,et al.  Replication of Genome-Wide Association Signals in UK Samples Reveals Risk Loci for Type 2 Diabetes , 2007, Science.

[85]  Marcia M. Nizzari,et al.  Genome-Wide Association Analysis Identifies Loci for Type 2 Diabetes and Triglyceride Levels , 2007, Science.

[86]  Beverley Balkau,et al.  Variation in FTO contributes to childhood obesity and severe adult obesity , 2007, Nature Genetics.

[87]  J. Gulcher,et al.  A variant in CDKAL1 influences insulin response and risk of type 2 diabetes , 2007, Nature Genetics.

[88]  G. Abecasis,et al.  A Genome-Wide Association Study of Type 2 Diabetes in Finns Detects Multiple Susceptibility Variants , 2007, Science.

[89]  M. Jarvelin,et al.  A Common Variant in the FTO Gene Is Associated with Body Mass Index and Predisposes to Childhood and Adult Obesity , 2007, Science.

[90]  T. Valle,et al.  Physical activity modifies the effect of SNPs in the SLC2A2 (GLUT2) and ABCC8 (SUR1) genes on the risk of developing type 2 diabetes. , 2007, Physiological genomics.

[91]  M. Laakso,et al.  Variants of transcription factor 7-like 2 (TCF7L2) gene predict conversion to type 2 diabetes in the Finnish Diabetes Prevention Study and are associated with impaired glucose regulation and impaired insulin secretion , 2007, Diabetologia.

[92]  David M Nathan,et al.  Effects of the type 2 diabetes-associated PPARG P12A polymorphism on progression to diabetes and response to troglitazone. , 2007, The Journal of clinical endocrinology and metabolism.

[93]  S. Wild,et al.  What is the scale of the future diabetes epidemic, and how certain are we about it? , 2007, Diabetologia.

[94]  T. Hudson,et al.  A genome-wide association study identifies novel risk loci for type 2 diabetes , 2007, Nature.

[95]  D. Altshuler,et al.  Type 2 Diabetes–Associated Missense Polymorphisms KCNJ11 E23K and ABCC8 A1369S Influence Progression to Diabetes and Response to Interventions in the Diabetes Prevention Program , 2007, Diabetes.

[96]  W. Rathmann,et al.  Variants of the Transcription Factor 7-Like 2 Gene (TCF7L2) are Strongly Associated with Type 2 Diabetes but not with the Metabolic Syndrome in the MONICA/KORA Surveys , 2007, Hormone and metabolic research = Hormon- und Stoffwechselforschung = Hormones et metabolisme.

[97]  J. Bullerdiek,et al.  Evidence for a 3p25 breakpoint hot spot region in thyroid tumors of follicular origin. , 2006, Thyroid : official journal of the American Thyroid Association.

[98]  David M Nathan,et al.  TCF7L2 polymorphisms and progression to diabetes in the Diabetes Prevention Program. , 2006, The New England journal of medicine.

[99]  Ewout W Steyerberg,et al.  Predictive testing for complex diseases using multiple genes: Fact or fiction? , 2006, Genetics in Medicine.

[100]  H. Stefánsson,et al.  Variant of transcription factor 7-like 2 (TCF7L2) gene confers risk of type 2 diabetes , 2006, Nature Genetics.

[101]  D. Yach,et al.  Epidemiologic and economic consequences of the global epidemics of obesity and diabetes , 2006, Nature Medicine.

[102]  J. Stengård,et al.  Concordance for Type 1 (insulin-dependent) and Type 2 (non-insulin-dependent) diabetes mellitus in a population-based cohort of twins in Finland , 1992, Diabetologia.

[103]  S. Wild,et al.  Global prevalence of diabetes: estimates for the year 2000 and projections for 2030. , 2004, Diabetes care.

[104]  M. Roden,et al.  Nutrient-induced insulin resistance in human skeletal muscle. , 2004, Current medicinal chemistry.

[105]  M. King,et al.  Concordance for Type 2 (non-insulin-dependent) diabetes mellitus in male twins , 1987, Diabetologia.

[106]  J. Diamond,et al.  The double puzzle of diabetes , 2003, Nature.

[107]  Ying Wang,et al.  KCNQ1 gain-of-function mutation in familial atrial fibrillation. , 2003, Science.

[108]  D. A. Pyke,et al.  Concordance rate for Type II diabetes mellitus in monozygotic twins: actuarial analysis , 1999, Diabetologia.

[109]  P. Coumel,et al.  A novel mutation in the potassium channel gene KVLQT1 causes the Jervell and Lange-Nielsen cardioauditory syndrome , 1997, Nature Genetics.

[110]  H. Keen,et al.  Risk of Diabetes in Offspring of Parents with Non‐insulin‐dependent Diabetes , 1995, Diabetic medicine : a journal of the British Diabetic Association.

[111]  T. Kuzuya,et al.  Relationship between obesity and concordance rate for type 2 (non-insulin-dependent) diabetes mellitus among twins. , 1994, Diabetes research and clinical practice.

[112]  H. Grosse [Diabetes and cancer]. , 1956, Deutsche Zeitschrift fur Verdauungs- und Stoffwechselkrankheiten.

[113]  박귀태,et al.  A Type 2 Diabetes–Associated Functional Regulatory Variant in a Pancreatic Islet Enhancer at the ADCY5 Locus , 2017, Diabetes.