The signless Laplacian spectral radius of graphs without intersecting odd cycles

Let Fa1,...,ak be a graph consisting of k cycles of odd length 2a1 + 1, . . . , 2ak + 1, respectively which intersect in exactly a common vertex, where k ≥ 1 and a1 ≥ a2 ≥ · · · ≥ ak ≥ 1. In this paper, we present a sharp upper bound for the signless Laplacian spectral radius of all Fa1,...,ak -free graphs and characterize all extremal graphs which attain the bound. The stability methods and structure of graphs associated with the eigenvalue are adapted for the proof. AMS Classification: 05C50, 05C35

[1]  Yanhua Zhao,et al.  The signless Laplacian spectral radius of graphs with no intersecting triangles , 2020, 2009.04738.

[2]  Xiaodong Zhang,et al.  Sharp Bounds for the Signless Laplacian Spectral Radius in Terms of Clique Number , 2012, 1209.3214.

[3]  Vladimir Nikiforov,et al.  The spectral radius of graphs without paths and cycles of specified length , 2009, 0903.5351.

[4]  V. Nikiforov,et al.  Maxima of the Q-index: graphs with no K_s,t , 2015, 1507.00625.

[5]  Bo Zhou,et al.  Sharp bounds on the spectral radius of a nonnegative matrix , 2013 .

[6]  P. Erdgs,et al.  ON MAXIMAL PATHS AND CIRCUITS OF GRAPHS , 2002 .

[7]  Vladimir Nikiforov,et al.  Bounds on graph eigenvalues II , 2006, math/0612461.

[8]  Zoltán Füredi,et al.  Extremal Graphs for Intersecting Triangles , 1995, J. Comb. Theory, Ser. B.

[9]  V. Nikiforov,et al.  Maxima of the Q-index: forbidden even cycles , 2014, 1410.2142.

[10]  Michael Tait,et al.  The Maximum Spectral Radius of Graphs Without Friendship Subgraphs , 2020, Electron. J. Comb..

[11]  Kinkar Chandra Das,et al.  Maximizing the sum of the squares of the degrees of a graph , 2004, Discret. Math..

[12]  Long-Tu Yuan,et al.  Extremal graphs for the k‐flower , 2018, J. Graph Theory.

[13]  V. Nikiforov,et al.  Maxima of the Q-index: graphs without long paths , 2013, 1308.4341.

[14]  Xiao-Dong Zhang,et al.  Spectral Extremal Results with Forbidding Linear Forests , 2018, Graphs Comb..

[15]  V. Nikiforov A contribution to the Zarankiewicz problem , 2009, 0903.5350.

[16]  G. Dirac Some Theorems on Abstract Graphs , 1952 .

[17]  V. Nikiforov Some new results in extremal graph theory , 2011, 1107.1121.

[18]  Xiao-Dong Zhang,et al.  Erdős-Gallai stability theorem for linear forests , 2019, Discret. Math..

[19]  Yu Qiu,et al.  Turán number and decomposition number of intersecting odd cycles , 2018, Discret. Math..

[20]  Frank Harary,et al.  Graph Theory , 2016 .

[21]  R. Merris A note on Laplacian graph eigenvalues , 1998 .

[22]  Ming-Zhu Chen,et al.  On the spectral radius of graphs without a star forest , 2021, Discret. Math..