Full vertical car observer design methodology for suspension control applications

This paper deals with the design of an H∞-observer to estimate the state variables of the vertical car dynamics to be used for suspension control applications. The proposed methodology allows to cope with both the disturbance decoupling problem (for the road profile effects) and the implementation issue (through observer pole placement). The considered model is a seven DOF full-car vertical model subject to unknown ground disturbances whose effects on the estimated state variables are minimized using the H∞ framework. Some experiments on a real test car highlight the performances of this observer which could be used in many advanced control strategies to improve the comfort and road holding of a vehicle using a reduced number of sensors.

[1]  J.K. Hedrick,et al.  Adaptive Observer for Active Automotive Suspensions , 1993, 1993 American Control Conference.

[2]  Chia-Chi Tsui A new design approach to unknown input observers , 1996, IEEE Trans. Autom. Control..

[3]  M. Darouach,et al.  Full-order observers for linear systems with unknown inputs , 1994, IEEE Trans. Autom. Control..

[4]  Damien Koenig,et al.  Unknown Input Observers for Switched Nonlinear Discrete Time Descriptor Systems , 2008, IEEE Transactions on Automatic Control.

[5]  Kyongsu Yi,et al.  Observer Design for Semi-Active Suspension Control , 1999 .

[6]  Olivier Sename,et al.  Skyhook and H8 Control of Semi-active Suspensions: Some Practical Aspects , 2003 .

[7]  Pierre Apkarian,et al.  Robust pole placement in LMI regions , 1999, IEEE Trans. Autom. Control..

[8]  Kyongsu Yi Design of disturbance decoupled bilinear observers , 1995 .

[9]  Kyongsu Yi,et al.  Observer Design for Electronic Suspension Applications , 1994 .

[10]  H. Trinh,et al.  On the Existence and Design of Functional Observers for Linear Systems , 2007, 2007 International Conference on Mechatronics and Automation.

[11]  Farbod Fahimi,et al.  Optimal Adaptive Active Suspensions for a Full Car Model , 1997 .

[12]  Damien Sammier,et al.  Sur la modélisation et la commande de suspension de véhicules automobiles , 2001 .

[13]  Ian Postlethwaite,et al.  Multivariable Feedback Control: Analysis and Design , 1996 .

[14]  Rajesh Rajamani,et al.  Adaptive observers for active automotive suspensions: theory and experiment , 1995, IEEE Trans. Control. Syst. Technol..

[15]  Dean Karnopp,et al.  SUBOPTIMAL CONTROL DESIGN OF ACTIVE AND PASSIVE SUSPENSIONS BASED ON A FULL CAR MODEL , 1996 .

[16]  Charles Poussot-Vassal,et al.  A new semi-active suspension control strategy through LPV technique , 2008 .

[17]  P. Müller,et al.  Disturbance decoupled observer design: a unified viewpoint , 1994, IEEE Trans. Autom. Control..

[18]  Alessandro Zin,et al.  Sur la commande robuste de suspensions automobiles en vue du contrôle global de châssis , 2005 .

[19]  Maria Elena Valcher State observers for discrete-time linear systems with unknown inputs , 1999, IEEE Trans. Autom. Control..

[20]  Sergio M. Savaresi,et al.  Acceleration-Driven-Damper (ADD): An Optimal Control Algorithm For Comfort-Oriented Semiactive Suspensions , 2005 .

[21]  Ling-Yuan Hsu,et al.  Vehicle Full-State Estimation and Prediction System Using State Observers , 2009, IEEE Transactions on Vehicular Technology.

[22]  Damien Koenig,et al.  Observer design for unknown input nonlinear descriptor systems via convex optimization , 2006, IEEE Transactions on Automatic Control.