Galileo ultraviolet spectrometer observations of atomic hydrogen in the atmosphere of Ganymede

Atomic hydrogen Lyman alpha radiation (121.6 nm) has been measured in emission from the atmosphere of Ganymede with the Galileo ultraviolet spectrometer. An exospheric model with the following parameters has been fit to the observational data: atomic hydrogen density directly above the surface (radius 2634 km) equal to 1.5 × 104 atoms cm−3 scale height 2634 km, exospheric temperature 450 K. A model calculation of the photodissociation of water vapor from surface ice at 146 K is used to obtain the photodissociation rate necessary to supply the hydrogen atoms that are escaping from the exosphere of Ganymede. The calculated escape flux of atomic hydrogen is 7 × 108 atoms/cm² sec. Two alternate but speculative sources of the atomic hydrogen escaping from Ganymede are photodesorption of water ice by ultraviolet photons in the wavelength range 120.5–186.0 nm and sputtering of water ice by Jupiter's magnetospheric ion plasma.

[1]  Robert E. Johnson,et al.  Planetary applications of ion induced erosion of condensed gas frosts , 1982 .

[2]  D. Hunten,et al.  Galileo Ultraviolet Spectrometer experiment , 1992 .

[3]  J. Poate,et al.  On the contribution of water products from Galilean satellites to the Jovian magnetosphere , 1978 .

[4]  John R. Spencer,et al.  Charge‐coupled device spectra of the Galilean satellites: Molecular oxygen on Ganymede , 1995 .

[5]  Louis A. Frank,et al.  Outflow of hydrogen ions from Ganymede , 1997 .

[6]  W. Tobiska,et al.  Latitude variations in interplanetary Lyman‐α data from the Galileo EUVS modeled with solar He 1083 nm images , 1996 .

[7]  M. McElroy,et al.  Stability of an oxygen atmosphere on ganymede , 1977 .

[8]  Paul D. Feldman,et al.  The Far-Ultraviolet Oxygen Airglow of Europa and Ganymede , 1998 .

[9]  Orlando,et al.  Low-energy (5-120 eV) electron-stimulated dissociation of amorphous D2O ice: D(2S), O(3P2,1,0), and O(1D2) yields and velocity distributions. , 1995, Physical review letters.

[10]  R. E. Johnson,et al.  Photodesorption from low-temperature water ice in interstellar and circumsolar grains , 1995, Nature.

[11]  J. W. Chamberlain,et al.  PLANETARY CORONAE AND ATMOSPHERIC EVAPORATION , 1963 .

[12]  W. Calvin,et al.  O2 on Ganymede: Spectral characteristics and plasma formation mechanisms , 1996 .

[13]  Charles A. Barth,et al.  Ultraviolet Emissions Observed near Venus from Mariner V , 1967, Science.

[14]  Gary J. Rottman,et al.  Solar‐Stellar Irradiance Comparison Experiment 1: 1. Instrument design and operation , 1993 .

[15]  R E Johnson,et al.  Detection of Ozone on Ganymede , 1996, Science.

[16]  T. Encrenaz,et al.  Near-Infrared Spectroscopy and Spectral Mapping of Jupiter and the Galilean Satellites: Results from Galileo's Initial Orbit , 1996, Science.

[17]  J. Abbatt,et al.  Heterogeneous Interactions of OH and HO2 Radicals with Surfaces Characteristic of Atmospheric Particulate Matter , 1996 .

[18]  Robert E. Johnson Energetic Charged-Particle Interactions with Atmospheres and Surfaces , 1990 .

[19]  S. M. Krimigis,et al.  Energetic particle signatures at Ganymede: Implications for Ganymede's magnetic field , 1997 .

[20]  A. Bar-Nun,et al.  Ejection of H_2O, O_2, H_2 and H from water ice by 0.5-6 keV H^+ and Ne^+ ion bombardment , 1985 .

[21]  J. Spencer Thermal segregation of water ice on the Galilean satellites , 1987 .

[22]  J. E. Kupperian,et al.  Far ultra-violet radiation in the night sky , 1959 .

[23]  Terry Z. Martin,et al.  Galileo Photopolarimeter-Radiometer Observations of Jupiter and the Galilean Satellites , 1996, Science.

[24]  G. Anderson,et al.  Mariner 6 and 7 Ultraviolet Spectrometer Experiment: Upper atmosphere data , 1971 .