Constructive sculpting of heterogeneous volumetric objects using trivariate B-splines

AbstractThis paper deals with modeling heterogeneous volumetric objects as point sets with attributes using trivariate B-splines. In contrast to homogeneous volumes with uniform distribution of material and other properties, a heterogeneous volumetric object has a number of variable attributes assigned at each point. An attribute is a mathematical model of an object property of an arbitrary nature (material, photometric, physical, statistical, etc.). In our approach, the function representation (FRep) is used as the basic model for both object geometry and attributes represented independently using real-valued scalar functions of point coordinates. While FRep directly defines object geometry, for an attribute it specifies a space partition used to define the attribute function. We propose a volume sculpting scheme with multiresolution capability based on trivariate B-spline functions to define both object geometry and its attributes. A new trivariate B-spline primitive is proposed that can be used as a leaf in an FRep constructive tree. An interactive volume modeler based on trivariate B-splines and other simple primitives is described, with a real-time repolygonization of the surface during modeling. We illustrate that the space partition obtained in the modeling process can be applied to define attributes for the objects with an arbitrary geometry model such as BRep or homogeneous volume models.

[1]  Gebräuchliche Fertigarzneimittel,et al.  V , 1893, Therapielexikon Neurologie.

[2]  Richard E. Parent A system for sculpting 3-D data , 1977, SIGGRAPH.

[3]  ARISTIDES A. G. REQUICHA,et al.  Representations for Rigid Solids: Theory, Methods, and Systems , 1980, CSUR.

[4]  William E. Lorensen,et al.  Marching cubes: A high resolution 3D surface construction algorithm , 1987, SIGGRAPH.

[5]  Richard E. Parent,et al.  A system for sculpting 3D data , 1988 .

[6]  Alexander A. Pasko,et al.  Geometric modeling in the analysis of trivariate functions , 1988, Comput. Graph..

[7]  Gerald Farin,et al.  Curves and surfaces for computer aided geometric design , 1990 .

[8]  John Snyder,et al.  Generative modelling for computer graphics and cad , 1992 .

[9]  Jarek Rossignac,et al.  Through the Cracks of the Solid Modeling Milestone , 1994 .

[10]  Jai Menon,et al.  More powerful solid modeling through ray representations , 1994, IEEE Computer Graphics and Applications.

[11]  David Salesin,et al.  Wavelets for computer graphics: a primer. 2 , 1995, IEEE Computer Graphics and Applications.

[12]  David Salesin,et al.  Wavelets for computer graphics: a primer.1 , 1995, IEEE Computer Graphics and Applications.

[13]  Arie E. Kaufman,et al.  Volume sculpting , 1995, I3D '95.

[14]  E. J. Stollnitz,et al.  Wavelets for Computer Graphics: A Primer Part 2 , 1995 .

[15]  William E. Lorensen,et al.  Marching cubes: a high resolution 3D surface construction algorithm , 1996 .

[16]  V. Savchenko,et al.  Parametric Patches and Volumes in Function Representation of Geometric Solids , 1996 .

[17]  Gerald E. Farin,et al.  Curves and surfaces for computer-aided geometric design - a practical guide, 4th Edition , 1997, Computer science and scientific computing.

[18]  Vinod Kumar,et al.  An approach to modeling multi-material objects , 1997, SMA '97.

[19]  Alexander A. Pasko,et al.  Transformation of functionally defined shapes by extended space mappings , 1998, The Visual Computer.

[20]  J. Andreas Bærentzen,et al.  Octree–based Volume Sculpting , 1998 .

[21]  Gershon Elber,et al.  Three dimensional freeform sculpting via zero sets of scalar trivariate functions , 1999, SMA '99.

[22]  Brian Wyvill,et al.  Extending the CSG Tree. Warping, Blending and Boolean Operations in an Implicit Surface Modeling System , 1999, Comput. Graph. Forum.

[23]  V. Kumara,et al.  A framework for object modeling , 1999 .

[24]  V. Savchenko,et al.  Extended Space Mapping with Bzier Patches and Volumes , 1999 .

[25]  Yoshiaki Takai,et al.  Free-form shape modeling by 3D cellular automata , 1999, Proceedings Shape Modeling International '99. International Conference on Shape Modeling and Applications.

[26]  Marie-Paule Cani,et al.  Practical volumetric sculpting , 2000, The Visual Computer.

[27]  V. Savchenko,et al.  Volume Sculpting with 4 D Spline Volumes , 2000 .

[28]  Min Chen,et al.  Constructive Volume Geometry , 2000, Comput. Graph. Forum.

[29]  V. Savchenko,et al.  Volume Sculpting with 4D Spline Volumes , 2000 .

[30]  Richard H. Crawford,et al.  Volumetric multi-texturing for functionally gradient material representation , 2001, SMA '01.

[31]  Elaine Cohen,et al.  Representation and extraction of volumetric attributes using trivariate splines: a mathematical framework , 2001, SMA '01.

[32]  Alexander A. Pasko,et al.  Constructive Hypervolume Modeling , 2001, Graph. Model..

[33]  Taku Komura,et al.  Topology matching for fully automatic similarity estimation of 3D shapes , 2001, SIGGRAPH.

[34]  Constructive modeling of FRep solids using spline volumes , 2001, SMA '01.

[35]  A. Pasko,et al.  CONSTRUCTIVE HYPERVOLUME MODELLING , 2001 .

[36]  Min Chen,et al.  vlib: A Volume Graphics API , 2001, VG.

[37]  C. Schlick,et al.  Constructive modeling of FRep solids using spline volumes , 2001, Symposium on Solid Modeling and Applications.

[38]  Niels Jørgen Christensen,et al.  Interactive Modelling of Shapes Using the Level-Set Method , 2002, Int. J. Shape Model..

[39]  Clif Flynt,et al.  Tcl/Tk , 2003 .

[40]  Alexander A. Pasko,et al.  Shape-driven deformations of functionally defined heterogeneous volumetric objects , 2003, GRAPHITE '03.