Functional anatomy of the macaque temporo-parieto-frontal connectivity

The primate parietal lobe is primarily dedicated to the processing of sensory information for the guidance of motor behavior, based on the integration of sensory with motor signals (sensorimotor transformations), mediated by specific, strong, and reciprocal connections with the motor cortex. Sensorimotor transformations have been regarded as an automatic process carried out independently from the temporal cortex, which is considered the location where sensory information is used for perceptual processes. However, both human and non-human primate studies have shown interactions between these two regions in different aspects of sensorimotor and cognitive processes. Connectional studies in macaques have provided a detailed description of the possible neural substrate for these interactions. Specifically, temporo-parietal connections almost exclusively involve the inferior parietal lobule (IPL) and display a fine topographic organization, providing the substrate for the role of the macaque IPL in "perception-based" control of motor behavior. Particularly, more rostral IPL areas are involved in motor and cognitive motor functions related to hand action organization and oculomotor control as well as in action and intention understanding, whereas more caudal IPL areas are involved in multisensory integration for the construction of space representations for guiding arm and eye motor behavior. Temporal and IPL-interconnected areas also share connections with specific ventral frontal areas and are thus part of large-scale cortical networks in which the various nodes are linked through "dorsal" temporo-parieto-frontal and "ventral" temporo-frontal pathways. Anatomical and functional studies suggest homologies between human and macaque temporo-parieto-frontal connectivity; they also suggest that higher-order functions of the human IPL could have evolved from the exploitation and adaptation of phylogenetically older neural mechanisms that occur in macaque brains. Thus, connectional data from macaque studies appear essential for understanding human brain mechanisms, even in cases of cognitive abilities undeveloped in other animals, and for interpreting clinical data, including disconnection syndromes.

[1]  Christian Windischberger,et al.  Toward discovery science of human brain function , 2010, Proceedings of the National Academy of Sciences.

[2]  G. Orban,et al.  Action Observation Circuits in the Macaque Monkey Cortex , 2011, The Journal of Neuroscience.

[3]  J. Marshall,et al.  Spatial cognition: evidence from visual neglect , 2003, Trends in Cognitive Sciences.

[4]  Leonardo Fogassi,et al.  Motor functions of the parietal lobe , 2005, Current Opinion in Neurobiology.

[5]  Ivan Toni,et al.  Perceptuo-Motor Interactions during Prehension Movements , 2008, The Journal of Neuroscience.

[6]  R. Malach,et al.  Object-related activity revealed by functional magnetic resonance imaging in human occipital cortex. , 1995, Proceedings of the National Academy of Sciences of the United States of America.

[7]  G. Rizzolatti,et al.  The mirror-neuron system. , 2004, Annual review of neuroscience.

[8]  G. Fink,et al.  REVIEW: The functional organization of the intraparietal sulcus in humans and monkeys , 2005, Journal of anatomy.

[9]  D. Pandya,et al.  Association fibre pathways of the brain: parallel observations from diffusion spectrum imaging and autoradiography. , 2007, Brain : a journal of neurology.

[10]  G. Luppino,et al.  Cortical connections of the inferior parietal cortical convexity of the macaque monkey. , 2006, Cerebral cortex.

[11]  M. A. Steinmetz,et al.  Neuronal responses in area 7a to multiple stimulus displays: II. responses are suppressed at the cued location. , 2001, Cerebral cortex.

[12]  A. Mohedano-Moriano,et al.  Anatomical pathways for auditory memory II: information from rostral superior temporal gyrus to dorsolateral temporal pole and medial temporal cortex , 2015, Front. Neurosci..

[13]  Tristan A. Chaplin,et al.  A Conserved Pattern of Differential Expansion of Cortical Areas in Simian Primates , 2013, The Journal of Neuroscience.

[14]  V. Mountcastle,et al.  Posterior parietal association cortex of the monkey: command functions for operations within extrapersonal space. , 1975, Journal of neurophysiology.

[15]  D. Leopold,et al.  Anatomical accuracy of brain connections derived from diffusion MRI tractography is inherently limited , 2014, Proceedings of the National Academy of Sciences.

[16]  Andrew Simmons,et al.  Beyond cortical localization in clinico-anatomical correlation , 2012, Cortex.

[17]  Nadim Joni Shah,et al.  Probabilistic fibre tract analysis of cytoarchitectonically defined human inferior parietal lobule areas reveals similarities to macaques , 2011, NeuroImage.

[18]  M. Mishkin,et al.  Dual streams of auditory afferents target multiple domains in the primate prefrontal cortex , 1999, Nature Neuroscience.

[19]  R. Passingham,et al.  Specialisation within the prefrontal cortex: the ventral prefrontal cortex and associative learning , 2000, Experimental Brain Research.

[20]  G. Rizzolatti,et al.  Parietal cortex: from sight to action , 1997, Current Opinion in Neurobiology.

[21]  G. Ratcliff,et al.  Defective visual localization in focal brain wounds. , 1972, Brain : a journal of neurology.

[22]  I. Fujita,et al.  Disparity selectivity of neurons in monkey inferior temporal cortex. , 2000, Journal of neurophysiology.

[23]  G. Schneider Two visual systems. , 1969, Science.

[24]  David I. Perrett,et al.  Visual Adaptation to Goal-directed Hand Actions , 2009, Journal of Cognitive Neuroscience.

[25]  D. Perrett,et al.  Perceptual History Influences Neural Responses to Face and Body Postures , 2003, Journal of Cognitive Neuroscience.

[26]  Marco Davare,et al.  Interactions between areas of the cortical grasping network , 2011, Current Opinion in Neurobiology.

[27]  Thomas R. Knösche,et al.  Anatomical and functional parcellation of the human lateral premotor cortex , 2008, NeuroImage.

[28]  M. Perenin,et al.  Optic ataxia: a specific disruption in visuomotor mechanisms. I. Different aspects of the deficit in reaching for objects. , 1988, Brain : a journal of neurology.

[29]  R. Vogels,et al.  Effects of Microstimulation in the Anterior Intraparietal Area during Three-Dimensional Shape Categorization , 2015, PloS one.

[30]  M. Corbetta,et al.  The Reorienting System of the Human Brain: From Environment to Theory of Mind , 2008, Neuron.

[31]  Shy Shoham,et al.  Neural substrates of tactile object recognition: An fMRI study , 2004, Human brain mapping.

[32]  D. Pandya,et al.  Dorsolateral prefrontal cortex: comparative cytoarchitectonic analysis in the human and the macaque brain and corticocortical connection patterns , 1999, The European journal of neuroscience.

[33]  M. Corbetta,et al.  Functional evolution of new and expanded attention networks in humans , 2015, Proceedings of the National Academy of Sciences.

[34]  J. Rilling,et al.  Process versus product in social learning: comparative diffusion tensor imaging of neural systems for action execution-observation matching in macaques, chimpanzees, and humans. , 2013, Cerebral cortex.

[35]  Nikos Makris,et al.  Mapping temporo-parietal and temporo-occipital cortico-cortical connections of the human middle longitudinal fascicle in subject-specific, probabilistic, and stereotaxic Talairach spaces , 2016, Brain Imaging and Behavior.

[36]  Scott T. Grafton,et al.  A distributed left hemisphere network active during planning of everyday tool use skills. , 2004, Cerebral cortex.

[37]  Guy A Orban,et al.  Functional definitions of parietal areas in human and non-human primates , 2016, Proceedings of the Royal Society B: Biological Sciences.

[38]  C. Bruce,et al.  Primate frontal eye fields. II. Physiological and anatomical correlates of electrically evoked eye movements. , 1985, Journal of neurophysiology.

[39]  W A MacKay,et al.  Properties of reach-related neuronal activity in cortical area 7A. , 1992, Journal of neurophysiology.

[40]  G. Luppino,et al.  Anatomical Evidence for the Involvement of the Macaque Ventrolateral Prefrontal Area 12r in Controlling Goal-Directed Actions , 2011, The Journal of Neuroscience.

[41]  P. Goldman-Rakic,et al.  Posterior parietal cortex in rhesus monkey: II. Evidence for segregated corticocortical networks linking sensory and limbic areas with the frontal lobe , 1989, The Journal of comparative neurology.

[42]  Giorgio M. Innocenti,et al.  Organization and evolution of parieto-frontal processing streams in macaque monkeys and humans , 2015, Neuroscience & Biobehavioral Reviews.

[43]  Hedderik eVan Rijn It's time to take the psychology of biological time into account: speed of driving affects a trip's subjective duration. , 2014 .

[44]  D. N. Pandya,et al.  Further observations on parieto-temporal connections in the rhesus monkey , 2004, Experimental Brain Research.

[45]  Yupeng Wu,et al.  Tracing short connections of the temporo-parieto-occipital region in the human brain using diffusion spectrum imaging and fiber dissection , 2016, Brain Research.

[46]  M. Goodale,et al.  Chapter 28 Visual pathways to perception and action , 1993 .

[47]  Michela Gamberini,et al.  Vision for Prehension in the Medial Parietal Cortex , 2015, Cerebral cortex.

[48]  C Galletti,et al.  Superior area 6 afferents from the superior parietal lobule in the macaque monkey , 1998, The Journal of comparative neurology.

[49]  Fang-Cheng Yeh,et al.  Rethinking the role of the middle longitudinal fascicle in language and auditory pathways. , 2013, Cerebral cortex.

[50]  Xueqi Cheng,et al.  A Network for Scene Processing in the Macaque Temporal Lobe , 2013, Neuron.

[51]  M. Peelen,et al.  Body and Object Effectors: The Organization of Object Representations in High-Level Visual Cortex Reflects Body–Object Interactions , 2013, The Journal of Neuroscience.

[52]  Guy A. Orban,et al.  The transition in the ventral stream from feature to real-world entity representations , 2014, Front. Psychol..

[53]  G. Luppino,et al.  Multimodal architectonic subdivision of the caudal ventrolateral prefrontal cortex of the macaque monkey , 2007, Brain Structure and Function.

[54]  D. Pandya,et al.  Delineation of the middle longitudinal fascicle in humans: a quantitative, in vivo, DT-MRI study. , 2009, Cerebral cortex.

[55]  D. Pandya,et al.  Frontal lobe connections of the superior temporal sulcus in the rhesus monkey , 1989, The Journal of comparative neurology.

[56]  C. Frith,et al.  Social Cognition in Humans , 2007, Current Biology.

[57]  Pier Francesco Ferrari,et al.  Towards a bottom-up perspective on animal and human cognition , 2010, Trends in Cognitive Sciences.

[58]  D. Perani,et al.  The anatomy of unilateral neglect after right-hemisphere stroke lesions. A clinical/CT-scan correlation study in man , 1986, Neuropsychologia.

[59]  G. Rizzolatti,et al.  Architecture of superior and mesial area 6 and the adjacent cingulate cortex in the macaque monkey , 1991, The Journal of comparative neurology.

[60]  M. Arbib,et al.  Language within our grasp , 1998, Trends in Neurosciences.

[61]  D. Boussaoud,et al.  Parietal inputs to dorsal versus ventral premotor areas in the macaque monkey: evidence for largely segregated visuomotor pathways , 2002, Experimental Brain Research.

[62]  P. Goldman-Rakic,et al.  Segregation of working memory functions within the dorsolateral prefrontal cortex , 2000, Experimental Brain Research.

[63]  D I Perrett,et al.  Frameworks of analysis for the neural representation of animate objects and actions. , 1989, The Journal of experimental biology.

[64]  Derek K. Jones,et al.  Perisylvian language networks of the human brain , 2005, Annals of neurology.

[65]  C. Bruce,et al.  Topography of projections to posterior cortical areas from the macaque frontal eye fields , 1995, The Journal of comparative neurology.

[66]  Marzio Gerbella,et al.  Multimodal architectonic subdivision of the rostral part (area F5) of the macaque ventral premotor cortex , 2009, The Journal of comparative neurology.

[67]  N. Kanwisher,et al.  The Fusiform Face Area: A Module in Human Extrastriate Cortex Specialized for Face Perception , 1997, The Journal of Neuroscience.

[68]  Yasushi Miyashita,et al.  Anatomical organization of forward fiber projections from area TE to perirhinal neurons representing visual long-term memory in monkeys , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[69]  Guy A. Orban,et al.  Visual Activation in Prefrontal Cortex is Stronger in Monkeys than in Humans , 2004, Journal of Cognitive Neuroscience.

[70]  M. Corbetta,et al.  Evolutionarily Novel Functional Networks in the Human Brain? , 2013, The Journal of Neuroscience.

[71]  J. Kalaska,et al.  Neural mechanisms for interacting with a world full of action choices. , 2010, Annual review of neuroscience.

[72]  G. Rizzolatti,et al.  Two different streams form the dorsal visual system: anatomy and functions , 2003, Experimental Brain Research.

[73]  A. Schleicher,et al.  Organization of the Human Inferior Parietal Lobule Based on Receptor Architectonics , 2012, Cerebral cortex.

[74]  Ivan Toni,et al.  The role of immediate and final goals in action planning: An fMRI study , 2007, NeuroImage.

[75]  Dwight J. Kravitz,et al.  The ventral visual pathway: an expanded neural framework for the processing of object quality , 2013, Trends in Cognitive Sciences.

[76]  F. Lacquaniti,et al.  Representing spatial information for limb movement: role of area 5 in the monkey. , 1995, Cerebral cortex.

[77]  K. Heilman,et al.  Two forms of ideomotor apraxia , 1982, Neurology.

[78]  Charles M. Butter,et al.  Impairments in orienting to visual stimuli in monkeys following unilateral lesions of the superior sulcal polysensory cortex , 1986, Neuropsychologia.

[79]  C. Westin,et al.  Human middle longitudinal fascicle: variations in patterns of anatomical connections , 2013, Brain Structure and Function.

[80]  Lauretta Passarelli,et al.  Cortical connections of parietal field PEc in the macaque: linking vision and somatic sensation for the control of limb action. , 2010, Cerebral cortex.

[81]  Angela R. Laird,et al.  ALE meta-analysis of action observation and imitation in the human brain , 2010, NeuroImage.

[82]  Emiliano Brunamonti,et al.  The over-representation of contralateral space in parietal cortex: a positive image of directional motor components of neglect? , 2005, Cerebral cortex.

[83]  G. Orban,et al.  The Representation of Tool Use in Humans and Monkeys: Common and Uniquely Human Features , 2009, The Journal of Neuroscience.

[84]  Paul B. Johnson,et al.  Cortical networks for visual reaching: physiological and anatomical organization of frontal and parietal lobe arm regions. , 1996, Cerebral cortex.

[85]  G. Rizzolatti,et al.  The organization of the cortical motor system: new concepts. , 1998, Electroencephalography and clinical neurophysiology.

[86]  E. Rolls,et al.  Functional subdivisions of the temporal lobe neocortex , 1987, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[87]  C. Colby Action-Oriented Spatial Reference Frames in Cortex , 1998, Neuron.

[88]  K. Zilles,et al.  The macaque inferior parietal lobule: cytoarchitecture and distribution pattern of serotonin 5-HT1A binding sites , 2005, Anatomy and Embryology.

[89]  K. Zilles,et al.  Functional neuroanatomy of the primate isocortical motor system , 2000, Anatomy and Embryology.

[90]  P. Goldman-Rakic,et al.  Dissociation of object and spatial processing domains in primate prefrontal cortex. , 1993, Science.

[91]  Marco Davare,et al.  Causal Connectivity between the Human Anterior Intraparietal Area and Premotor Cortex during Grasp , 2010, Current Biology.

[92]  J. Assad,et al.  Dynamic coding of behaviourally relevant stimuli in parietal cortex , 2002, Nature.

[93]  M. Jeannerod,et al.  Visual cognition: a new look at the two-visual systems model , 2005, Neuropsychologia.

[94]  R. M. Siegel,et al.  Corticocortical connections of anatomically and physiologically defined subdivisions within the inferior parietal lobule , 1990, The Journal of comparative neurology.

[95]  G. Rizzolatti,et al.  Cortical mechanisms underlying the organization of goal-directed actions and mirror neuron-based action understanding. , 2014, Physiological reviews.

[96]  M. Egan,et al.  Functional analysis of genetic variation in catechol-O-methyltransferase (COMT): effects on mRNA, protein, and enzyme activity in postmortem human brain. , 2004, American journal of human genetics.

[97]  Leslie G. Ungerleider,et al.  Connections of inferior temporal areas TEO and TE with parietal and frontal cortex in macaque monkeys. , 1994, Cerebral cortex.

[98]  Scott H. Johnson-Frey The neural bases of complex tool use in humans , 2004, Trends in Cognitive Sciences.

[99]  D. Pandya,et al.  Cortico-cortical connections in the rhesus monkey. , 1969, Brain research.

[100]  Leslie G. Ungerleider,et al.  Pathways for motion analysis: Cortical connections of the medial superior temporal and fundus of the superior temporal visual areas in the macaque , 1990, The Journal of comparative neurology.

[101]  C. Galletti,et al.  Occipital (V6) and parietal (V6A) areas in the anterior wall of the parieto‐occipital sulcus of the macaque: a cytoarchitectonic study , 2005, The European journal of neuroscience.

[102]  K M Heilman,et al.  Disorders of visual attention. , 1993, Bailliere's clinical neurology.

[103]  J. Price,et al.  Architectonic subdivision of the orbital and medial prefrontal cortex in the macaque monkey , 1994, The Journal of comparative neurology.

[104]  Scott T. Grafton The cognitive neuroscience of prehension: recent developments , 2010, Experimental Brain Research.

[105]  D. Pandya,et al.  Intrinsic connections and architectonics of posterior parietal cortex in the rhesus monkey , 1982, The Journal of comparative neurology.

[106]  D. I. Perrett,et al.  Visual and somatosensory processing in the macaque temporal cortex: the role of ‘expectation’ , 2004, Experimental Brain Research.

[107]  G. Rizzolatti,et al.  Parietal Lobe: From Action Organization to Intention Understanding , 2005, Science.

[108]  Ravi S. Menon,et al.  Haptic study of three-dimensional objects activates extrastriate visual areas , 2002, Neuropsychologia.

[109]  G. Orban,et al.  Common and segregated processing of observed actions in human SPL. , 2013, Cerebral cortex.

[110]  A. Murata,et al.  Cortical connections of the macaque anterior intraparietal (AIP) area. , 2008, Cerebral cortex.

[111]  J. Martino,et al.  Fiber Dissection and Diffusion Tensor Imaging Tractography Study of the Temporoparietal Fiber Intersection Area , 2013, Neurosurgery.

[112]  P. Goldman-Rakic,et al.  Posterior parietal cortex in rhesus monkey: I. Parcellation of areas based on distinctive limbic and sensory corticocortical connections , 1989, The Journal of comparative neurology.

[113]  Fenna M. Krienen,et al.  Opportunities and limitations of intrinsic functional connectivity MRI , 2013, Nature Neuroscience.

[114]  R Caminiti,et al.  Corticocortical efferent systems in the monkey: A quantitative spatial analysis of the tangential distribution of cells of origin , 1985, The Journal of comparative neurology.

[115]  J. Bullier,et al.  Topography of visual cortex connections with frontal eye field in macaque: convergence and segregation of processing streams , 1995, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[116]  J. Randall Flanagan,et al.  Representation of Object Weight in Human Ventral Visual Cortex , 2014, Current Biology.

[117]  J. Kaas,et al.  Subdivisions of auditory cortex and processing streams in primates. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[118]  Marzio Gerbella,et al.  Projections to the superior colliculus from inferior parietal, ventral premotor, and ventrolateral prefrontal areas involved in controlling goal-directed hand actions in the macaque. , 2014, Cerebral cortex.

[119]  D. Pandya,et al.  Projections to the frontal cortex from the posterior parietal region in the rhesus monkey , 1984, The Journal of comparative neurology.

[120]  David K. Yu,et al.  Superficial white matter fiber systems impede detection of long-range cortical connections in diffusion MR tractography , 2015, Proceedings of the National Academy of Sciences.

[121]  M. A. Steinmetz,et al.  Posterior Parietal Cortex Automatically Encodes the Location of Salient Stimuli , 2005, The Journal of Neuroscience.

[122]  K. Hasan,et al.  Decoding the superior parietal lobule connections of the superior longitudinal fasciculus/arcuate fasciculus in the human brain , 2014, Neuroscience.

[123]  Hiroaki Ishida,et al.  Functional Properties of Parietal Hand Manipulation–related Neurons and Mirror Neurons Responding to Vision of Own Hand Action , 2015, Journal of Cognitive Neuroscience.

[124]  T. Hendler,et al.  Convergence of visual and tactile shape processing in the human lateral occipital complex. , 2002, Cerebral cortex.

[125]  Kadharbatcha S Saleem,et al.  Subdivisions and connectional networks of the lateral prefrontal cortex in the macaque monkey , 2014, The Journal of comparative neurology.

[126]  Katrin Amunts,et al.  The human inferior parietal cortex: Cytoarchitectonic parcellation and interindividual variability , 2006, NeuroImage.

[127]  Lauretta Passarelli,et al.  Cortical Connectivity Suggests a Role in Limb Coordination for Macaque Area PE of the Superior Parietal Cortex , 2013, The Journal of Neuroscience.

[128]  M. Corbetta,et al.  Spatial neglect and attention networks. , 2011, Annual review of neuroscience.

[129]  Elena Borra,et al.  Architectonic organization of the inferior parietal convexity of the macaque monkey , 2006, The Journal of comparative neurology.

[130]  Amir Amedi,et al.  Multisensory visual–tactile object related network in humans: insights gained using a novel crossmodal adaptation approach , 2009, Experimental Brain Research.

[131]  C. Galletti,et al.  Functional Demarcation of a Border Between Areas V6 and V6A in the Superior Parietal Gyrus of the Macaque Monkey , 1996, The European journal of neuroscience.

[132]  H. Sakata,et al.  Toward an understanding of the neural processing for 3D shape perception , 2005, Neuropsychologia.

[133]  Robert Turner,et al.  Connectivity architecture and subdivision of the human inferior parietal cortex revealed by diffusion MRI. , 2014, Cerebral cortex.

[134]  B. C. Motter,et al.  The influence of attentive fixation upon the excitability of the light- sensitive neurons of the posterior parietal cortex , 1981, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[135]  T. Hackett Information flow in the auditory cortical network , 2011, Hearing Research.

[136]  G. Leichnetz Connections of the medial posterior parietal cortex (area 7m) in the monkey , 2001, The Anatomical record.

[137]  Ashwin G Ramayya,et al.  A DTI investigation of neural substrates supporting tool use. , 2010, Cerebral cortex.

[138]  K. Saleem,et al.  Complementary circuits connecting the orbital and medial prefrontal networks with the temporal, insular, and opercular cortex in the macaque monkey , 2008, The Journal of comparative neurology.

[139]  Simon B Eickhoff,et al.  Brain regions involved in human movement perception: A quantitative voxel‐based meta‐analysis , 2012, Human brain mapping.

[140]  M. Giese,et al.  Visual Learning Shapes the Processing of Complex Movement Stimuli in the Human Brain , 2009, The Journal of Neuroscience.

[141]  M. Catani,et al.  Monkey to human comparative anatomy of the frontal lobe association tracts , 2012, Cortex.

[142]  M. Sereno,et al.  From monkeys to humans: what do we now know about brain homologies? , 2005, Current Opinion in Neurobiology.

[143]  Lauretta Passarelli,et al.  Cortical connections of the visuomotor parietooccipital area V6Ad of the macaque monkey , 2009, The Journal of comparative neurology.

[144]  D. J. Felleman,et al.  Distributed hierarchical processing in the primate cerebral cortex. , 1991, Cerebral cortex.

[145]  Guy A. Orban,et al.  Integration of shape and motion cues in biological motion processing in the monkey STS , 2012, NeuroImage.

[146]  C. Galletti,et al.  The cortical connections of area V6: an occipito‐parietal network processing visual information , 2001, The European journal of neuroscience.

[147]  D. Perrett,et al.  Neural Representation for the Perception of the Intentionality of Actions , 2000, Brain and Cognition.

[148]  Peter Janssen,et al.  Synchronization between the end stages of the dorsal and the ventral visual stream. , 2011, Journal of neurophysiology.

[149]  Bruno B Averbeck,et al.  Representing spatial relationships in posterior parietal cortex: single neurons code object-referenced position. , 2007, Cerebral cortex.

[150]  Amir Amedi,et al.  A Putative Model of Multisensory Object Representation , 2009, Brain Topography.

[151]  Paul Cisek,et al.  Cortical mechanisms of action selection: the affordance competition hypothesis , 2007, Philosophical Transactions of the Royal Society B: Biological Sciences.

[152]  Guy A. Orban,et al.  The neural basis of human tool use , 2014, Front. Psychol..

[153]  D. Pandya,et al.  Segmentation of subcomponents within the superior longitudinal fascicle in humans: a quantitative, in vivo, DT-MRI study. , 2005, Cerebral cortex.

[154]  Jon H Kaas,et al.  The evolution of brains from early mammals to humans. , 2013, Wiley interdisciplinary reviews. Cognitive science.

[155]  G. Luppino,et al.  Cortical connections of the macaque caudal ventrolateral prefrontal areas 45A and 45B. , 2010, Cerebral cortex.

[156]  A P Georgopoulos,et al.  Effects of optic flow in motor cortex and area 7a. , 2001, Journal of neurophysiology.

[157]  R. Caminiti,et al.  Cortical networks for visual reaching , 2004, Experimental Brain Research.

[158]  G. Rizzolatti,et al.  The Cortical Motor System , 2001, Neuron.

[159]  John H. R. Maunsell,et al.  Shape selectivity in primate lateral intraparietal cortex , 1998, Nature.

[160]  R. Andersen,et al.  Visual receptive field organization and cortico‐cortical connections of the lateral intraparietal area (area LIP) in the macaque , 1990, The Journal of comparative neurology.

[161]  J. Kaas,et al.  Subdivisions of auditory cortex and ipsilateral cortical connections of the parabelt auditory cortex in macaque monkeys , 1998, The Journal of comparative neurology.

[162]  Jason B. Mattingley,et al.  Is there a critical lesion site for unilateral spatial neglect? A meta-analysis using activation likelihood estimation , 2012, Front. Hum. Neurosci..

[163]  C. Padoa-Schioppa,et al.  Annals of the New York Academy of Sciences the Orbitofrontal Cortex and the Computation of Subjective Value: Consolidated Concepts and New Perspectives , 2022 .

[164]  Ronald R. Peeters,et al.  Functional properties of the left parietal tool use region , 2013, NeuroImage.

[165]  G. Rizzolatti,et al.  Neural Circuits Underlying Imitation Learning of Hand Actions An Event-Related fMRI Study , 2004, Neuron.

[166]  F. Lacquaniti,et al.  Eye-hand coordination during reaching. I. Anatomical relationships between parietal and frontal cortex. , 2001, Cerebral cortex.

[167]  D. Pandya,et al.  Afferent cortical connections and architectonics of the superior temporal sulcus and surrounding cortex in the rhesus monkey , 1978, Brain Research.

[168]  M. A. Steinmetz,et al.  Neuronal responses in area 7a to multiple-stimulus displays: I. neurons encode the location of the salient stimulus. , 2001, Cerebral cortex.

[169]  H. Karnath,et al.  The anatomy of spatial neglect , 2012, Neuropsychologia.

[170]  Giacomo Rizzolatti,et al.  The mirror mechanism: a basic principle of brain function , 2016, Nature Reviews Neuroscience.

[171]  Dwight J. Kravitz,et al.  A new neural framework for visuospatial processing , 2011, Nature Reviews Neuroscience.

[172]  P. Bartolomeo,et al.  Brain networks of visuospatial attention and their disruption in visual neglect , 2012, Front. Hum. Neurosci..

[173]  D. Amaral,et al.  Entorhinal cortex of the monkey: IV. Topographical and laminar organization of cortical afferents , 2008, The Journal of comparative neurology.

[174]  Lacquaniti,et al.  Visuo‐motor transformations for arm reaching , 1998, The European journal of neuroscience.

[175]  D. Pandya,et al.  Parietal, temporal, and occipita projections to cortex of the superior temporal sulcus in the rhesus monkey: A retrograde tracer study , 1994, The Journal of comparative neurology.

[176]  Keiji Tanaka,et al.  Connections between Anterior Inferotemporal Cortex and Superior Temporal Sulcus Regions in the Macaque Monkey , 2000, The Journal of Neuroscience.

[177]  M. Catani,et al.  A lateralized brain network for visuospatial attention , 2011, Nature Neuroscience.

[178]  T. Allison,et al.  Social perception from visual cues: role of the STS region , 2000, Trends in Cognitive Sciences.

[179]  P. Bartolomeo,et al.  Left unilateral neglect as a disconnection syndrome. , 2007, Cerebral cortex.

[180]  G. Rizzolatti,et al.  Functional Organization of Inferior Parietal Lobule Convexity in the Macaque Monkey: Electrophysiological Characterization of Motor, Sensory and Mirror Responses and Their Correlation with Cytoarchitectonic Areas , 2022 .

[181]  C. Cusick,et al.  The Superior Temporal Polysensory Region in Monkeys , 1997 .

[182]  Ivan Toni,et al.  Parieto-Frontal Connectivity during Visually Guided Grasping , 2007, The Journal of Neuroscience.

[183]  G. Orban,et al.  Macaque Inferior Temporal Neurons Are Selective for Three-Dimensional Boundaries and Surfaces , 2001, The Journal of Neuroscience.

[184]  M. Goodale,et al.  The visual brain in action , 1995 .

[185]  K. Zilles,et al.  Crossmodal Processing of Object Features in Human Anterior Intraparietal Cortex An fMRI Study Implies Equivalencies between Humans and Monkeys , 2002, Neuron.

[186]  C. Galletti,et al.  The human cortical areas V6 and V6A , 2015, Visual Neuroscience.

[187]  R. Desimone,et al.  Visual properties of neurons in a polysensory area in superior temporal sulcus of the macaque. , 1981, Journal of neurophysiology.

[188]  Michael S. Beauchamp,et al.  Touch, sound and vision in human superior temporal sulcus , 2008, NeuroImage.

[189]  G. Orban,et al.  Comparative mapping of higher visual areas in monkeys and humans , 2004, Trends in Cognitive Sciences.

[190]  J. K. Hietanen,et al.  Motion sensitive cells in the macaque superior temporal polysensory area , 1993, Experimental Brain Research.

[191]  M. Mesulam A cortical network for directed attention and unilateral neglect , 1981, Annals of neurology.

[192]  Richard A. Andersen,et al.  Separate body- and world-referenced representations of visual space in parietal cortex , 1998, Nature.

[193]  J. Rilling,et al.  Continuity, Divergence, and the Evolution of Brain Language Pathways , 2011, Front. Evol. Neurosci..