Collective magnetotaxis of microbial holobionts is optimized by the three-dimensional organization and magnetic properties of ectosymbionts

Significance Symbiosis between a motile microeukaryotic host and dozens of nonmotile, surface-attached magnetic bacterial symbionts was recently discovered, where the host acquires geomagnetic field-guided navigation thanks to chains of ferrimagnetic nanoparticles (within organelles called magnetosomes) produced by the bacteria. Our findings reveal magnetic dipoles of each magnetosome chain consistently align and efficiently confer a large magnetic moment to the host. Remarkably, the calculated magnetic moment is greatly in excess of that required to gain a magnetotactic advantage. These results not only show an optimization of collective magnetotaxis during the course of evolution owing to the three-dimensional organization and magnetic properties of bacteria but also raise the question on the magnetosome’s function beyond magnetic field guidance since they abundantly cover the host.

[1]  R. Egli,et al.  Magnetotactic advantage in stable sediment by long-term observations of magnetotactic bacteria in Earth’s field, zero field and alternating field , 2022, PloS one.

[2]  S. Ravanel,et al.  Subcellular architecture and metabolic connection in the planktonic photosymbiosis between Collodaria (radiolarians) and their microalgae , 2021, bioRxiv.

[3]  D. Schüler,et al.  A bacterial cytolinker couples positioning of magnetic organelles to cell shape control , 2020, Proceedings of the National Academy of Sciences.

[4]  D. Moreira,et al.  The Syntrophy Hypothesis for the Origin of Eukaryotes , 2001 .

[5]  Christopher J. Hernandez,et al.  Cell biomechanics and mechanobiology in bacteria: Challenges and opportunities , 2020, APL bioengineering.

[6]  C. Santini,et al.  Juxtaposed membranes underpin cellular adhesion and display unilateral cell division of multicellular magnetotactic prokaryotes. , 2020, Environmental microbiology.

[7]  U. Lins,et al.  Magnetosome magnetite biomineralization in a flagellated protist: evidence for an early evolutionary origin for magnetoreception in eukaryotes? , 2020, Environmental microbiology.

[8]  C. Fradin,et al.  Magnetite magnetosome biomineralization in Magnetospirillum magneticum strain AMB-1: A time course study , 2019, Chemical Geology.

[9]  J. Marchesi,et al.  Host-microbiota interactions: from holobiont theory to analysis , 2019, Microbiome.

[10]  T. Heulin,et al.  Holobiont: a conceptual framework to explore the eco-evolutionary and functional implications of host-microbiota interactions in all ecosystems. , 2018, The New phytologist.

[11]  A. Muxworthy,et al.  MERRILL: Micromagnetic Earth Related Robust Interpreted Language Laboratory , 2018, Geochemistry, geophysics, geosystems : G(3).

[12]  A. Spang,et al.  Symbiosis in the microbial world: from ecology to genome evolution , 2018, Biology Open.

[13]  D. Moreira,et al.  Symbiosis in eukaryotic evolution. , 2017, Journal of theoretical biology.

[14]  A. Manz,et al.  Magnetic response of Magnetospirillum gryphiswaldense observed inside a microfluidic channel , 2017, Journal of Magnetism and Magnetic Materials.

[15]  D. Schüler,et al.  Measurement of the magnetic moment of single Magnetospirillum gryphiswaldense cells by magnetic tweezers , 2017, Scientific Reports.

[16]  Long-Fei Wu,et al.  Ultrastructure of ellipsoidal magnetotactic multicellular prokaryotes depicts their complex assemblage and cellular polarity in the context of magnetotaxis , 2017, Environmental microbiology.

[17]  R. Belkhou,et al.  Performance of the HERMES beamline at the carbon K-edge , 2017 .

[18]  R. Knight,et al.  Origin of microbial biomineralization and magnetotaxis during the Archean , 2017, Proceedings of the National Academy of Sciences.

[19]  J. Carazo,et al.  Characterization of transfer function, resolution and depth of field of a soft X-ray microscope applied to tomography enhancement by Wiener deconvolution. , 2016, Biomedical optics express.

[20]  D. Schüler,et al.  Segregation of prokaryotic magnetosomes organelles is driven by treadmilling of a dynamic actin-like MamK filament , 2016, BMC Biology.

[21]  Harald R. Gruber-Vodicka,et al.  Environmental Breviatea harbor mutualistic Arcobacter epibionts , 2016, Nature.

[22]  D. Pignol,et al.  Controlled Biomineralization of Magnetite in Bacteria , 2016 .

[23]  I. Belevich,et al.  Microscopy Image Browser: A Platform for Segmentation and Analysis of Multidimensional Datasets , 2016, PLoS biology.

[24]  D. Moreira,et al.  Open Questions on the Origin of Eukaryotes. , 2015, Trends in ecology & evolution.

[25]  J. Nicolas,et al.  MISTRAL: a transmission soft X-ray microscopy beamline for cryo nano-tomography of biological samples and magnetic domains imaging. , 2015, Journal of synchrotron radiation.

[26]  R. Belkhou,et al.  HERMES: a soft X-ray beamline dedicated to X-ray microscopy. , 2015, Journal of synchrotron radiation.

[27]  Philippe Vandenkoornhuyse,et al.  The importance of the microbiome of the plant holobiont. , 2015, The New phytologist.

[28]  Changyou Chen,et al.  Magnetosomes extracted from Magnetospirillum magneticum strain AMB-1 showed enhanced peroxidase-like activity under visible-light irradiation. , 2015, Enzyme and microbial technology.

[29]  K. Rosso,et al.  Redox cycling of Fe(II) and Fe(III) in magnetite by Fe-metabolizing bacteria , 2015, Science.

[30]  D. Faivre,et al.  Positioning the Flagellum at the Center of a Dividing Cell To Combine Bacterial Division with Magnetic Polarity , 2015, mBio.

[31]  R. Frankel,et al.  Diversity of magneto-aerotactic behaviors and oxygen sensing mechanisms in cultured magnetotactic bacteria. , 2014, Biophysical journal.

[32]  M. R. Edwards,et al.  Influence of Magnetic Fields on Magneto-Aerotaxis , 2014, PloS one.

[33]  C. Fradin,et al.  A Comparison of Methods to Measure the Magnetic Moment of Magnetotactic Bacteria through Analysis of Their Trajectories in External Magnetic Fields , 2013, PloS one.

[34]  R. Frankel,et al.  Phylogenetic significance of composition and crystal morphology of magnetosome minerals , 2013, Front. Microbiol..

[35]  N. Moran,et al.  The gut microbiota of insects - diversity in structure and function. , 2013, FEMS microbiology reviews.

[36]  D. Schüler,et al.  Monophyletic origin of magnetotaxis and the first magnetosomes. , 2013, Environmental microbiology.

[37]  M. Farina,et al.  Cell Adhesion, Multicellular Morphology, and Magnetosome Distribution in the Multicellular Magnetotactic Prokaryote Candidatus Magnetoglobus multicellularis , 2013, Microscopy and Microanalysis.

[38]  A. Hitchcock,et al.  Anomalous Magnetic Orientations of Magnetosome Chains in a Magnetotactic Bacterium: Magnetovibrio blakemorei Strain MV-1 , 2013, PloS one.

[39]  S. Geng,et al.  Magnetosomes eliminate intracellular reactive oxygen species in Magnetospirillum gryphiswaldense MSR-1. , 2012, Environmental microbiology.

[40]  W. Martin,et al.  Biochemistry and Evolution of Anaerobic Energy Metabolism in Eukaryotes , 2012, Microbiology and Molecular Reviews.

[41]  B. Leander,et al.  Identity of epibiotic bacteria on symbiontid euglenozoans in O2-depleted marine sediments: evidence for symbiont and host co-evolution , 2011, The ISME Journal.

[42]  N. Philippe,et al.  An MCP-like protein interacts with the MamK cytoskeleton and is involved in magnetotaxis in Magnetospirillum magneticum AMB-1. , 2010, Journal of molecular biology.

[43]  L. Margulis,et al.  Spirochete Attachment Ultrastructure: Implications for the Origin and Evolution of Cilia , 2010, The Biological Bulletin.

[44]  Wei Lin,et al.  Reduced efficiency of magnetotaxis in magnetotactic coccoid bacteria in higher than geomagnetic fields. , 2009, Biophysical journal.

[45]  M. Perantoni,et al.  Magnetic properties of the microorganism Candidatus Magnetoglobus multicellularis , 2009, Naturwissenschaften.

[46]  N. Portman,et al.  Swimming with protists: perception, motility and flagellum assembly , 2008, Nature Reviews Microbiology.

[47]  T. Fenchel,et al.  Oxygen and the Spatial Structure of Microbial Communities , 2008, Biological reviews of the Cambridge Philosophical Society.

[48]  Alfonso F Davila,et al.  Magnetic optimization in a multicellular magnetotactic organism. , 2007, Biophysical journal.

[49]  Natalia N. Ivanova,et al.  Symbiosis insights through metagenomic analysis of a microbial consortium. , 2006, Nature Reviews Microbiology.

[50]  R. Frankel,et al.  Magnetosome formation in prokaryotes , 2004, Nature Reviews Microbiology.

[51]  D. Schüler,et al.  The biomineralization of magnetosomes in Magnetospirillum gryphiswaldense , 2002, International microbiology : the official journal of the Spanish Society for Microbiology.

[52]  T. Vicsek,et al.  Collective Motion , 1999, physics/9902023.

[53]  Frankel,et al.  Magnetic microstructure of magnetotactic bacteria by electron holography , 1998, Science.

[54]  D. Schüler,et al.  Dynamics of Iron Uptake and Fe3O4 Biomineralization during Aerobic and Microaerobic Growth of Magnetospirillum gryphiswaldense , 1998, Journal of bacteriology.

[55]  R. Frankel,et al.  Magneto-aerotaxis in marine coccoid bacteria. , 1997, Biophysical journal.

[56]  R. Frankel,et al.  Electron microscopy study of magnetosomes in a cultured coccoid magnetotactic bacterium , 1993, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[57]  Edward F. DeLong,et al.  Multiple Evolutionary Origins of Magnetotaxis in Bacteria , 1993, Science.

[58]  E. Wajnberg,et al.  A study of magnetic properties of magnetotactic bacteria. , 1986, Biophysical Journal.

[59]  R. Frankel,et al.  Magnetite and magnetotaxis in algae. , 1986, Biophysical journal.

[60]  Henrique Lins de Barros,et al.  Motion of magnetotactic microorganisms , 1986 .

[61]  D. Schüler,et al.  MamY is a membrane-bound protein that aligns magnetosomes and the motility axis of helical magnetotactic bacteria , 2019, Nature Microbiology.

[62]  Hans-Christian Hege,et al.  amira: A Highly Interactive System for Visual Data Analysis , 2005, The Visualization Handbook.

[63]  R. Frankel,et al.  Electron microscopy study of magnetosomes in two cultured vibrioid magnetotactic bacteria , 1993, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[64]  Lynn Margulis,et al.  Symbiosis as a source of evolutionary innovation : speciation and morphogenesis , 1991 .

[65]  H. Vali,et al.  Magnetic Bacteria in Lake Sediments , 1989 .

[66]  R. Blakemore,et al.  Navigational Compass in Magnetic Bacteria , 1980 .