Multiscale Spatial Density Smoothing: An Application to Large-Scale Radiological Survey and Anomaly Detection

ABSTRACT We consider the problem of estimating a spatially varying density function, motivated by problems that arise in large-scale radiological survey and anomaly detection. In this context, the density functions to be estimated are the background gamma-ray energy spectra at sites spread across a large geographical area, such as nuclear production and waste-storage sites, military bases, medical facilities, university campuses, or the downtown of a city. Several challenges combine to make this a difficult problem. First, the spectral density at any given spatial location may have both smooth and nonsmooth features. Second, the spatial correlation in these density functions is neither stationary nor locally isotropic. Finally, at some spatial locations, there are very little data. We present a method called multiscale spatial density smoothing that successfully addresses these challenges. The method is based on recursive dyadic partition of the sample space, and therefore shares much in common with other multiscale methods, such as wavelets and Pólya-tree priors. We describe an efficient algorithm for finding a maximum a posteriori (MAP) estimate that leverages recent advances in convex optimization for nonsmooth functions. We apply multiscale spatial density smoothing to real data collected on the background gamma-ray spectra at locations across a large university campus. The method exhibits state-of-the-art performance for spatial smoothing in density estimation, and it leads to substantial improvements in power when used in conjunction with existing methods for detecting the kinds of radiological anomalies that may have important consequences for public health and safety.

[1]  Ryan Martin,et al.  A nonparametric empirical Bayes framework for large-scale multiple testing. , 2011, Biostatistics.

[2]  Oluwasanmi Koyejo,et al.  False Discovery Rate Smoothing , 2014, Journal of the American Statistical Association.

[3]  James G. Scott,et al.  Bayesian Inference for Logistic Models Using Pólya–Gamma Latent Variables , 2012, 1205.0310.

[4]  Stephen P. Boyd,et al.  Distributed Optimization and Statistical Learning via the Alternating Direction Method of Multipliers , 2011, Found. Trends Mach. Learn..

[5]  David B. Dunson,et al.  Latent Stick-Breaking Processes , 2010, Journal of the American Statistical Association.

[6]  M. Lavine More Aspects of Polya Tree Distributions for Statistical Modelling , 1992 .

[7]  L. Rudin,et al.  Nonlinear total variation based noise removal algorithms , 1992 .

[8]  Nicholas A. Johnson,et al.  A Dynamic Programming Algorithm for the Fused Lasso and L 0-Segmentation , 2013 .

[9]  Lindsay C. Todd,et al.  Lynx: An unattended sensor system for detection of gamma-ray and neutron emissions from special nuclear materials , 2009 .

[10]  Edward A. Roualdes Bayesian Trend Filtering , 2015, 1505.07710.

[11]  Detecting changes in maps of gamma spectra with Kolmogorov–Smirnov tests , 2015, 1507.06954.

[12]  Donald Geman,et al.  Constrained Restoration and the Recovery of Discontinuities , 1992, IEEE Trans. Pattern Anal. Mach. Intell..

[13]  H. Rue Fast sampling of Gaussian Markov random fields , 2000 .

[14]  Jianqing Fan,et al.  Variable Selection via Nonconcave Penalized Likelihood and its Oracle Properties , 2001 .

[15]  Routine Surveys for Gamma-Ray Background Characterization , 2013, IEEE Transactions on Nuclear Science.

[16]  Alexander J. Smola,et al.  Kernels and Regularization on Graphs , 2003, COLT.

[17]  Cheng Soon Ong,et al.  Multivariate spearman's ρ for aggregating ranks using copulas , 2016 .

[18]  Ryan J. Tibshirani,et al.  Fast and Flexible ADMM Algorithms for Trend Filtering , 2014, ArXiv.

[19]  Brian J. Reich,et al.  A MULTIVARIATE SEMIPARAMETRIC BAYESIAN SPATIAL MODELING FRAMEWORK FOR HURRICANE SURFACE WIND FIELDS , 2007, 0709.0427.

[20]  Alexander J. Smola,et al.  Trend Filtering on Graphs , 2014, J. Mach. Learn. Res..

[21]  Li Ma Markov adaptive Pólya trees and multi-resolution adaptive shrinkage in nonparametric modeling , 2014, 1401.7241.

[22]  M. Jansen Multiscale Poisson data smoothing , 2006 .

[23]  B.D. Milbrath,et al.  Low Count Anomaly Detection at Large Standoff Distances , 2010, IEEE Transactions on Nuclear Science.

[24]  James G. Scott,et al.  Shrink Globally, Act Locally: Sparse Bayesian Regularization and Prediction , 2022 .

[25]  Sw. Banerjee,et al.  Hierarchical Modeling and Analysis for Spatial Data , 2003 .

[26]  D. W. Scott,et al.  On Locally Adaptive Density Estimation , 1996 .

[27]  K. Anderson,et al.  Examination of Count-Starved Gamma Spectra Using the Method of Spectral Comparison Ratios , 2006, IEEE Transactions on Nuclear Science.

[28]  W. Sudderth,et al.  Polya Trees and Random Distributions , 1992 .

[29]  J. Besag Spatial Interaction and the Statistical Analysis of Lattice Systems , 1974 .

[30]  Craig Lyons,et al.  Aerial measuring system in Japan. , 2012, Health physics.

[31]  Sudipto Banerjee,et al.  Bayesian Models for Detecting Difference Boundaries in Areal Data. , 2015, Statistica Sinica.

[32]  Stephen P. Boyd,et al.  An ADMM Algorithm for a Class of Total Variation Regularized Estimation Problems , 2012, 1203.1828.

[33]  Yu-Xiang Wang,et al.  Total Variation Classes Beyond 1d: Minimax Rates, and the Limitations of Linear Smoothers , 2016, NIPS.

[34]  S. MacEachern,et al.  Bayesian Nonparametric Spatial Modeling With Dirichlet Process Mixing , 2005 .

[35]  Timothy E Hanson,et al.  Spatially Dependent Polya Tree Modeling for Survival Data , 2011, Biometrics.

[36]  R J Emery,et al.  REPORTED EVENTS OF STOLEN RADIOACTIVE SOURCES IN TEXAS FROM 1956 TO 2000 , 2006, Health physics.

[37]  James G. Scott,et al.  A Fast and Flexible Algorithm for the Graph-Fused Lasso , 2015, 1505.06475.

[38]  I. Johnstone,et al.  Minimax estimation via wavelet shrinkage , 1998 .

[39]  E. Bai,et al.  A distribution-free test for anomalous gamma-ray spectra , 2014 .

[40]  Bradley P. Carlin,et al.  Bayesian measures of model complexity and fit , 2002 .

[41]  Robert D. Nowak,et al.  Multiscale Poisson Intensity and Density Estimation , 2007, IEEE Transactions on Information Theory.

[42]  Jaeyong Lee,et al.  GENERALIZED DOUBLE PARETO SHRINKAGE. , 2011, Statistica Sinica.

[43]  Rob J. Hyndman,et al.  Bandwidth selection for kernel conditional density estimation , 2001 .

[44]  G. Nason,et al.  A Haar-Fisz Algorithm for Poisson Intensity Estimation , 2004 .

[45]  R. Tibshirani,et al.  Sparsity and smoothness via the fused lasso , 2005 .

[46]  William S. Charlton,et al.  Predicting Concrete Roadway Contribution to Gamma-Ray Background in Radiation Portal Monitor Systems , 2014 .

[47]  Matt Taddy,et al.  Multinomial Inverse Regression for Text Analysis , 2010, 1012.2098.

[48]  R. Tibshirani,et al.  The solution path of the generalized lasso , 2010, 1005.1971.

[49]  A. Athey,et al.  Spatially-Aware Temporal Anomaly Mapping of Gamma Spectra , 2014, IEEE Transactions on Nuclear Science.

[50]  James G. Scott,et al.  The horseshoe estimator for sparse signals , 2010 .

[51]  James R. Faulkner,et al.  Bayesian trend filtering: adaptive temporal smoothing with shrinkage priors , 2015 .