Multiscale Spatial Density Smoothing: An Application to Large-Scale Radiological Survey and Anomaly Detection
暂无分享,去创建一个
James G. Scott | Wesley Tansey | Alex Reinhart | Alex Athey | Wesley Tansey | A. Athey | A. Reinhart
[1] Ryan Martin,et al. A nonparametric empirical Bayes framework for large-scale multiple testing. , 2011, Biostatistics.
[2] Oluwasanmi Koyejo,et al. False Discovery Rate Smoothing , 2014, Journal of the American Statistical Association.
[3] James G. Scott,et al. Bayesian Inference for Logistic Models Using Pólya–Gamma Latent Variables , 2012, 1205.0310.
[4] Stephen P. Boyd,et al. Distributed Optimization and Statistical Learning via the Alternating Direction Method of Multipliers , 2011, Found. Trends Mach. Learn..
[5] David B. Dunson,et al. Latent Stick-Breaking Processes , 2010, Journal of the American Statistical Association.
[6] M. Lavine. More Aspects of Polya Tree Distributions for Statistical Modelling , 1992 .
[7] L. Rudin,et al. Nonlinear total variation based noise removal algorithms , 1992 .
[8] Nicholas A. Johnson,et al. A Dynamic Programming Algorithm for the Fused Lasso and L 0-Segmentation , 2013 .
[9] Lindsay C. Todd,et al. Lynx: An unattended sensor system for detection of gamma-ray and neutron emissions from special nuclear materials , 2009 .
[10] Edward A. Roualdes. Bayesian Trend Filtering , 2015, 1505.07710.
[11] Detecting changes in maps of gamma spectra with Kolmogorov–Smirnov tests , 2015, 1507.06954.
[12] Donald Geman,et al. Constrained Restoration and the Recovery of Discontinuities , 1992, IEEE Trans. Pattern Anal. Mach. Intell..
[13] H. Rue. Fast sampling of Gaussian Markov random fields , 2000 .
[14] Jianqing Fan,et al. Variable Selection via Nonconcave Penalized Likelihood and its Oracle Properties , 2001 .
[15] Routine Surveys for Gamma-Ray Background Characterization , 2013, IEEE Transactions on Nuclear Science.
[16] Alexander J. Smola,et al. Kernels and Regularization on Graphs , 2003, COLT.
[17] Cheng Soon Ong,et al. Multivariate spearman's ρ for aggregating ranks using copulas , 2016 .
[18] Ryan J. Tibshirani,et al. Fast and Flexible ADMM Algorithms for Trend Filtering , 2014, ArXiv.
[19] Brian J. Reich,et al. A MULTIVARIATE SEMIPARAMETRIC BAYESIAN SPATIAL MODELING FRAMEWORK FOR HURRICANE SURFACE WIND FIELDS , 2007, 0709.0427.
[20] Alexander J. Smola,et al. Trend Filtering on Graphs , 2014, J. Mach. Learn. Res..
[21] Li Ma. A NONPARAMETRIC PROCESS FOR MULTI-RESOLUTION ADAPTIVE SHRINKAGE By , 2014 .
[22] M. Jansen. Multiscale Poisson data smoothing , 2006 .
[23] B.D. Milbrath,et al. Low Count Anomaly Detection at Large Standoff Distances , 2010, IEEE Transactions on Nuclear Science.
[24] James G. Scott,et al. Shrink Globally, Act Locally: Sparse Bayesian Regularization and Prediction , 2022 .
[25] Sw. Banerjee,et al. Hierarchical Modeling and Analysis for Spatial Data , 2003 .
[26] D. W. Scott,et al. On Locally Adaptive Density Estimation , 1996 .
[27] K. Anderson,et al. Examination of Count-Starved Gamma Spectra Using the Method of Spectral Comparison Ratios , 2006, IEEE Transactions on Nuclear Science.
[28] W. Sudderth,et al. Polya Trees and Random Distributions , 1992 .
[29] J. Besag. Spatial Interaction and the Statistical Analysis of Lattice Systems , 1974 .
[30] Craig Lyons,et al. Aerial measuring system in Japan. , 2012, Health physics.
[31] Sudipto Banerjee,et al. Bayesian Models for Detecting Difference Boundaries in Areal Data. , 2015, Statistica Sinica.
[32] Stephen P. Boyd,et al. An ADMM Algorithm for a Class of Total Variation Regularized Estimation Problems , 2012, 1203.1828.
[33] Yu-Xiang Wang,et al. Total Variation Classes Beyond 1d: Minimax Rates, and the Limitations of Linear Smoothers , 2016, NIPS.
[34] S. MacEachern,et al. Bayesian Nonparametric Spatial Modeling With Dirichlet Process Mixing , 2005 .
[35] Timothy E Hanson,et al. Spatially Dependent Polya Tree Modeling for Survival Data , 2011, Biometrics.
[36] R J Emery,et al. REPORTED EVENTS OF STOLEN RADIOACTIVE SOURCES IN TEXAS FROM 1956 TO 2000 , 2006, Health physics.
[37] James G. Scott,et al. A Fast and Flexible Algorithm for the Graph-Fused Lasso , 2015, 1505.06475.
[38] I. Johnstone,et al. Minimax estimation via wavelet shrinkage , 1998 .
[39] E. Bai,et al. A distribution-free test for anomalous gamma-ray spectra , 2014 .
[40] Bradley P. Carlin,et al. Bayesian measures of model complexity and fit , 2002 .
[41] Robert D. Nowak,et al. Multiscale Poisson Intensity and Density Estimation , 2007, IEEE Transactions on Information Theory.
[42] Jaeyong Lee,et al. GENERALIZED DOUBLE PARETO SHRINKAGE. , 2011, Statistica Sinica.
[43] Rob J. Hyndman,et al. Bandwidth selection for kernel conditional density estimation , 2001 .
[44] G. Nason,et al. A Haar-Fisz Algorithm for Poisson Intensity Estimation , 2004 .
[45] R. Tibshirani,et al. Sparsity and smoothness via the fused lasso , 2005 .
[46] William S. Charlton,et al. Predicting Concrete Roadway Contribution to Gamma-Ray Background in Radiation Portal Monitor Systems , 2014 .
[47] Matt Taddy,et al. Multinomial Inverse Regression for Text Analysis , 2010, 1012.2098.
[48] R. Tibshirani,et al. The solution path of the generalized lasso , 2010, 1005.1971.
[49] A. Athey,et al. Spatially-Aware Temporal Anomaly Mapping of Gamma Spectra , 2014, IEEE Transactions on Nuclear Science.
[50] James G. Scott,et al. The horseshoe estimator for sparse signals , 2010 .
[51] James R. Faulkner,et al. Bayesian trend filtering: adaptive temporal smoothing with shrinkage priors , 2015 .