The bioleaching of nickel-copper sulfides

Abstract Demand for nickel, largely driven by the Chinese stainless steel market, currently exceeds production, causing an unprecedented rise in the price of nickel and renewed interest in bioleaching technology for the processing of low grade nickel sulfide ores and concentrates. Although nickel inhibits bacterial physiological functions such as iron- and sulfur-oxidation, some bacteria adapt readily to high concentrations. In pilot‐scale continuous reactors, mixed microbial populations grew actively over many months in the presence of up to 400 mM nickel (23 g/L). The results of bench-scale test work have been sufficiently encouraging to prompt pilot- and demonstration-scale trials in heaps and agitated tanks in Australia, China, Finland and South Africa in recent years. The first commercial implementation of nickel sulfide heap leaching is likely to be the operation at Talvivaara, Finland.

[1]  Hong-mei Li,et al.  Bacterial leaching of nickel-bearing pyrrhotite , 2006 .

[2]  Chemical and electrochemical basis of bioleaching processes , 2001 .

[3]  J. Puhakka,et al.  Microbiological solubilization of metals from complex sulfide ore material in aerated column reactors , 1986 .

[4]  D. Kelly,et al.  Growth of Thiobacillus ferrooxidans on ferrous iron in chemostat culture: Influence of product and substrate inhibition , 2008 .

[5]  Terunobu Maeda,et al.  Nickel Inhibition of the Growth of a Sulfur-oxidizing Bacterium Isolated from Corroded Concrete , 1996 .

[6]  N. Rice,et al.  The adaptation of Thiobacillus ferrooxidans for the treatment of nickel–iron sulphide concentrates , 2002 .

[7]  V. Leão,et al.  Bioleaching of a complex nickel–iron concentrate by mesophile bacteria , 2006 .

[8]  Douglas E. Rawlings,et al.  Biomining : Theory, Microbes and Industrial Processes , 2006 .

[9]  C. Inoue,et al.  Inhibitory effect of high concentrations of ferric ions on the activity of Acidithiobacillus ferrooxidans. , 2003, Journal of bioscience and bioengineering.

[10]  S. Heimala,et al.  Study of the bioleaching of a nickel containing black-schist ore , 1999 .

[11]  B. P. Gilbertson Creating value through innovation: biotechnology in mining , 2000 .

[12]  C. Baker-Austin,et al.  Life in acid: pH homeostasis in acidophiles. , 2007, Trends in microbiology.

[13]  Paul C. Miller The Design and Operating Practice of Bacterial Oxidation Plant Using Moderate Thermophiles(The BacTech Process) , 1997 .

[14]  P. Spira,et al.  Evaluation of hazard from self-heating of sulphide rock , 1995 .

[15]  K. McEwan,et al.  Bioleaching of base metal sulphide concentrates: A comparison of mesophile and thermophile bacterial cultures , 1999 .

[16]  Terunobu Maeda,et al.  Inhibition of Sulfur Oxidizing Activity by Nickel Ion in Thiobacillus thiooxidans NB1-3 Isolated from the Corroded Concrete , 1997 .

[17]  P. D'hugues,et al.  Bioleaching of a Cobalt-Containing Pyrite in Stirred Reactors: a Case Study from Laboratory Scale to Industrial Application , 2007 .

[18]  Nelson Belzile,et al.  A review on pyrrhotite oxidation , 2004 .

[19]  S. Dave,et al.  Interactions of Acidithiobacillus ferrooxidans with Heavy Metals, Various Forms of Arsenic and Pyrite , 2007 .

[20]  D. Cantero,et al.  Kinetic study of ferrous sulphate oxidation of Acidithiobacillus ferrooxidans in the presence of heavy metal ions , 2005 .

[21]  Torma Ae Microbiological oxidation of synthetic cobalt, nickel and zinc sulfides by Thiobacillus ferrooxidans. , 1971 .

[22]  R. Pogaku,et al.  Optimization of Bacterial Oxidation Process Parameters for Selective Leaching of Nickel by Thiobacillus Ferrooxidans , 2006 .

[23]  J. Puhakka,et al.  Bioleaching of acid‐consuming low‐grade nickel ore with elemental sulfur addition and subsequent acid generation , 2006 .

[24]  I. Suzuki,et al.  Effect of Various Ions, pH, and Osmotic Pressure on Oxidation of Elemental Sulfur by Thiobacillus thiooxidans , 1999, Applied and Environmental Microbiology.

[25]  P. C. V. Aswegen,et al.  The BIOX™ Process for the Treatment of Refractory Gold Concentrates , 2007 .

[26]  Hong-mei Li,et al.  Influence of Cu 2+ and Mg 2+ on the growth and activity of Ni 2+ adapted Thiobacillus ferrooxidans , 2001 .

[27]  J. Puhakka,et al.  Kinetics of iron oxidation by Leptospirillum ferriphilum dominated culture at pH below one , 2007, Biotechnology and bioengineering.

[28]  K. Blight,et al.  Effect of ionic strength on iron oxidation with batch cultures of chemolithotrophic bacteria , 2004 .

[29]  K. Stetter,et al.  Metallosphaera prunae, sp. nov., a novel metal-mobilizing, thermoacidophilic Archaeum, isolated from a uranium mine in Germany , 1995 .

[30]  Differential tolerance ofSulfolobusstrains to transition metals , 1992 .

[31]  Helen R. Watling,et al.  The bioleaching of sulphide minerals with emphasis on copper sulphides — A review , 2006 .

[32]  P. C. Banerjee,et al.  Extreme tolerance to cadmium and high resistance to copper, nickel and zinc in different Acidiphilium strains , 1996 .

[33]  Jiang Li,et al.  Nickel-Resistant Determinant from Leptospirillum ferriphilum , 2007, Applied and Environmental Microbiology.

[34]  D. Johnson,et al.  Novel acidophiles isolated from moderately acidic mine drainage waters , 2003 .

[35]  J. Trevors,et al.  Resistance to heavy metals in different strains of Thiobacillus ferrooxidans , 1997 .

[36]  I. A. Chisholm,et al.  Metal resistance and plasmid DNA in Thiobacillus ferrooxidans , 1998, Antonie van Leeuwenhoek.

[37]  San-zhong Li,et al.  Major types, characteristics and geodynamic mechanism of Upper Paleozoic copper deposits in northern Xinjiang, northwestern China , 2006 .

[38]  O. Lahav,et al.  Improved Experimental and Computational Methodology for Determining the Kinetic Equation and the Extant Kinetic Constants of Fe(II) Oxidation by Acidithiobacillus ferrooxidans , 2007, Applied and Environmental Microbiology.

[39]  E. Donati,et al.  Bioleaching of heazelwoodite by Thiobacillus spp , 2001 .

[40]  O. Tuovinen,et al.  Alteration of Mica and Feldspar Associated with the Microbiological Oxidation of Pyrrhotite and Pyrite , 1993 .

[41]  C. Brierley,et al.  Microbial Mineral Recovery , 1990 .

[42]  K. Stetter,et al.  Sulfolobus metallicus, sp. nov., a novel strictly chemolithoautotrophic thermophilic archaeal species of metal-mobilizers , 1991 .

[43]  Guangjin Zhang,et al.  The contribution of direct and indirect actions in bioleaching of pentlandite , 2005 .

[44]  Differential tolerance of Sulfolobus strains to transition metals , 1992 .

[45]  E. Donati,et al.  The role of Acidithiobacillus Caldud in the bioleaching of metal sulfides , 2002 .

[46]  M. Riekkola-Vanhanen Talvivaara Black Schist Bioheapleaching Demonstration Plant , 2007 .

[47]  O. Tuovinen,et al.  Alterations in surfaces and textures of minerals during the bacterial leaching of a complex sulfide ore , 1992 .

[48]  K. Blight,et al.  Sodium sulphate and sodium chloride effects on batch culture of iron oxidising bacteria , 2005 .

[49]  J. Puhakka,et al.  Heap Leaching of Black Schist , 2007 .

[50]  J. Puhakka,et al.  Microbial Community of the Talvivaara Demonstration-Scale Bioheap , 2007 .

[51]  D. Grogan,et al.  Phenotypic characterization of the archaebacterial genus Sulfolobus: comparison of five wild-type strains , 1989, Journal of bacteriology.

[52]  Chongyue Fu,et al.  Proceedings of the international conference on mining and metallurgy of complex nickel ores : Jinchang, China, September 5-8, 1993 , 1993 .

[53]  P. Franzmann,et al.  Effect of pH on rates of iron and sulfur oxidation by bioleaching organisms , 2008 .

[54]  T. Ojumu,et al.  A review of rate equations proposed for microbial ferrous-iron oxidation with a view to application to heap bioleaching , 2006 .

[55]  C. Jones,et al.  FACTORS AFFECTING METABOLISM AND FERROUS IRON OXIDATION IN SUSPENSIONS AND BATCH CULTURES OF THIOBACILLUS FERROOXIDANS: RELEVANCE TO FERRIC IRON LEACH SOLUTION REGENERATION , 1978 .

[56]  I. Iwasaki,et al.  Role of Galvanic Interactions in the Bioleaching of Duluth Gabbro Copper-Nickel Sulfides , 1983 .

[57]  O. Tuovinen,et al.  Bacterial leaching of complex sulfide ore samples in bench-scale column reactors , 1995 .

[58]  K. Stetter,et al.  Metallosphaera sedula gen, and sp. nov. Represents a New Genus of Aerobic, Metal-Mobilizing, Thermoacidophilic Archaebacteria , 1989 .

[59]  O. Tuovinen,et al.  Tolerance ofThiobacillus ferrooxidans to some metals , 2005, Antonie van Leeuwenhoek.

[60]  D. Johnson,et al.  Enumeration and Characterization of Acidophilic Microorganisms Isolated from a Pilot Plant Stirred-Tank Bioleaching Operation , 2003, Applied and Environmental Microbiology.

[61]  D. Rawlings,et al.  Molecular Relationship between Two Groups of the Genus Leptospirillum and the Finding that Leptospirillum ferriphilum sp. nov. Dominates South African Commercial Biooxidation Tanks That Operate at 40°C , 2002, Applied and Environmental Microbiology.

[62]  Lawrence E Murr,et al.  Metallurgical Applications of Bacterial Leaching and Related Microbiological Phenomena, with A. E. Torma and J. A. Brierly , Academic Press, New York, , 1978 .

[63]  M. Sampson,et al.  Influence of base metals on the oxidising ability of acidophilic bacteria during the oxidation of ferrous sulfate and mineral sulfide concentrates, using mesophiles and moderate thermophiles , 2001 .

[64]  P. Norris Acidophile Diversity in Mineral Sulfide Oxidation , 2007 .

[65]  M. T. Novo,et al.  Thiobacillus ferrooxidans response to copper and other heavy metals: growth, protein synthesis and protein phosphorylation , 2000, Antonie van Leeuwenhoek.

[66]  D. Blowes,et al.  Environmental geochemistry of sulfide oxidation , 1993 .