Depolarization Drives β-Catenin into Neuronal Spines Promoting Changes in Synaptic Structure and Function

[1]  D. V. Vactor,et al.  Drosophila Liprin-α and the Receptor Phosphatase Dlar Control Synapse Morphogenesis , 2002, Neuron.

[2]  R. Weinberg,et al.  Interaction between GRIP and Liprin-α/SYD2 Is Required for AMPA Receptor Targeting , 2002, Neuron.

[3]  E. Kandel,et al.  Rapid Increase in Clusters of Presynaptic Proteins at Onset of Long-Lasting Potentiation , 2001, Science.

[4]  Yingming Zhao,et al.  The Presynaptic Particle Web Ultrastructure, Composition, Dissolution, and Reconstitution , 2001, Neuron.

[5]  G. Westbrook,et al.  Integrins mediate functional pre- and postsynaptic maturation at a hippocampal synapse , 2001, Nature.

[6]  P. Pavlidis,et al.  Pair Recordings Reveal All-Silent Synaptic Connections and the Postsynaptic Expression of Long-Term Potentiation , 2001, Neuron.

[7]  L. Neckers,et al.  Geldanamycin abrogates ErbB2 association with proteasome-resistant beta-catenin in melanoma cells, increases beta-catenin-E-cadherin association, and decreases beta-catenin-sensitive transcription. , 2001, Cancer research.

[8]  Guosong Liu,et al.  A Developmental Switch in Neurotransmitter Flux Enhances Synaptic Efficacy by Affecting AMPA Receptor Activation , 2001, Neuron.

[9]  J. Lilien,et al.  PTP1B regulates neurite extension mediated by cell‐cell and cell‐matrix adhesion molecules , 2001, Journal of neuroscience research.

[10]  O. Bozdagi,et al.  Increasing Numbers of Synaptic Puncta during Late-Phase LTP N-Cadherin Is Synthesized, Recruited to Synaptic Sites, and Required for Potentiation , 2000, Neuron.

[11]  S. Gasparini,et al.  Silent synapses in the developing hippocampus: lack of functional AMPA receptors or low probability of glutamate release? , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[12]  S. Grant,et al.  Proteomic analysis of NMDA receptor–adhesion protein signaling complexes , 2000, Nature Neuroscience.

[13]  T. Manabe,et al.  Loss of Cadherin-11 Adhesion Receptor Enhances Plastic Changes in Hippocampal Synapses and Modifies Behavioral Responses , 2000, Molecular and Cellular Neuroscience.

[14]  R. Tsien,et al.  Postfusional regulation of cleft glutamate concentration during LTP at ‘silent synapses’ , 2000, Nature Neuroscience.

[15]  M. Takeichi,et al.  Blockade of cadherin‐6B activity perturbs the distribution of PSD‐95 family proteins in retinal neurones , 2000, Genes to cells : devoted to molecular & cellular mechanisms.

[16]  A. G. de Herreros,et al.  Regulation of E-cadherin/Catenin Association by Tyrosine Phosphorylation* , 1999, The Journal of Biological Chemistry.

[17]  N. Toni,et al.  LTP promotes formation of multiple spine synapses between a single axon terminal and a dendrite , 1999, Nature.

[18]  E. Schuman,et al.  The role of cell adhesion molecules in synaptic plasticity and memory. , 1999, Current opinion in cell biology.

[19]  F. Engert,et al.  Dendritic spine changes associated with hippocampal long-term synaptic plasticity , 1999, Nature.

[20]  A. Ullrich,et al.  Phosphorylation and Free Pool of β-Catenin Are Regulated by Tyrosine Kinases and Tyrosine Phosphatases during Epithelial Cell Migration* , 1999, The Journal of Biological Chemistry.

[21]  C F Stevens,et al.  Quantitative fine-structural analysis of olfactory cortical synapses. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[22]  K. Svoboda,et al.  Rapid dendritic morphogenesis in CA1 hippocampal dendrites induced by synaptic activity. , 1999, Science.

[23]  J. Lilien,et al.  The Nonreceptor Protein Tyrosine Phosphatase PTP1B Binds to the Cytoplasmic Domain of N-Cadherin and Regulates the Cadherin–Actin Linkage , 1998, The Journal of cell biology.

[24]  C. Pourreyron,et al.  Loss of epithelial differentiation markers and acquisition of vimentin expression after xenograft with laminin-1 enhance migratory and invasive abilities of human colon cancer cells LoVo C5. , 1998, Differentiation; research in biological diversity.

[25]  Chou P Hung,et al.  A Role for the Cadherin Family of Cell Adhesion Molecules in Hippocampal Long-Term Potentiation , 1998, Neuron.

[26]  Wayne A. Hendrickson,et al.  Structure-Function Analysis of Cell Adhesion by Neural (N-) Cadherin , 1998, Neuron.

[27]  L. Norton,et al.  The Epidermal Growth Factor Receptor Modulates the Interaction of E-cadherin with the Actin Cytoskeleton* , 1998, The Journal of Biological Chemistry.

[28]  R. Kemler,et al.  Altered Cell Adhesion Activity by Pervanadate Due to the Dissociation of α-Catenin from the E-Cadherin·Catenin Complex* , 1998, The Journal of Biological Chemistry.

[29]  Stephen W. Byers,et al.  Serine Phosphorylation-regulated Ubiquitination and Degradation of β-Catenin* , 1997, The Journal of Biological Chemistry.

[30]  Stephen J. Smith,et al.  Optical detection of a quantal presynaptic membrane turnover , 1997, Nature.

[31]  Jörg Stappert,et al.  β‐catenin is a target for the ubiquitin–proteasome pathway , 1997 .

[32]  K. Mostov,et al.  NH2-terminal Deletion of β-Catenin Results in Stable Colocalization of Mutant β-Catenin with Adenomatous Polyposis Coli Protein and Altered MDCK Cell Adhesion , 1997, The Journal of cell biology.

[33]  S. J. Smith,et al.  Quantitative analysis of cadherin-catenin-actin reorganization during development of cell-cell adhesion , 1996, The Journal of cell biology.

[34]  M. Takeichi,et al.  The catenin/cadherin adhesion system is localized in synaptic junctions bordering transmitter release zones , 1996, The Journal of cell biology.

[35]  L. Reichardt,et al.  Association between a transmembrane protein tyrosine phosphatase and the cadherin-catenin complex , 1996, The Journal of cell biology.

[36]  D. Colman,et al.  A Model for Central Synaptic Junctional Complex Formation Based on the Differential Adhesive Specificities of the Cadherins , 1996, Neuron.

[37]  Michael Kühl,et al.  Functional interaction of β-catenin with the transcription factor LEF-1 , 1996, Nature.

[38]  Hans Clevers,et al.  XTcf-3 Transcription Factor Mediates β-Catenin-Induced Axis Formation in Xenopus Embryos , 1996, Cell.

[39]  P. Polakis,et al.  Deletion of an amino-terminal sequence beta-catenin in vivo and promotes hyperphosporylation of the adenomatous polyposis coli tumor suppressor protein , 1996, Molecular and cellular biology.

[40]  A. Ullrich,et al.  Association of Human Protein-tyrosine Phosphatase κ with Members of the Armadillo Family* , 1996, The Journal of Biological Chemistry.

[41]  R. Mummery,et al.  N‐Cadherin Is a Major Glycoprotein Component of Isolated Rat Forebrain Postsynaptic Densities , 1995, Journal of neurochemistry.

[42]  Peter D. Kwong,et al.  Structural basis of cell-cell adhesion by cadherins , 1995, Nature.

[43]  S. Ishihara,et al.  The roles of catenins in the cadherin-mediated cell adhesion: functional analysis of E-cadherin-alpha catenin fusion molecules , 1994, The Journal of cell biology.

[44]  H. Schulman,et al.  Nitric oxide stimulates Ca2+-independent synaptic vesicle release , 1994, Neuron.

[45]  Frans,et al.  Loss of epithelial differentiation and gain of invasiveness correlates with tyrosine phosphorylation of the E-cadherin/beta-catenin complex in cells transformed with a temperature-sensitive v-SRC gene , 1993, The Journal of cell biology.

[46]  M. Takeichi,et al.  p60v‐src causes tyrosine phosphorylation and inactivation of the N‐cadherin‐catenin cell adhesion system. , 1993, The EMBO journal.

[47]  M. Kennedy,et al.  The rat brain postsynaptic density fraction contains a homolog of the drosophila discs-large tumor suppressor protein , 1992, Neuron.

[48]  M. Takeichi,et al.  Cadherin-mediated cell-cell adhesion is perturbed by v-src tyrosine phosphorylation in metastatic fibroblasts , 1992, The Journal of cell biology.

[49]  S. Hirohashi,et al.  Identification of a neural α-catenin as a key regulator of cadherin function and multicellular organization , 1992, Cell.

[50]  Antonio Malgaroli,et al.  Glutamate-induced long-term potentiation of the frequency of miniature synaptic currents in cultured hippocampal neurons , 1992, Nature.

[51]  M. Ringwald,et al.  Uvomorulin-catenin complex formation is regulated by a specific domain in the cytoplasmic region of the cell adhesion molecule. , 1990, Proceedings of the National Academy of Sciences of the United States of America.

[52]  KM Harris,et al.  Dendritic spines of CA 1 pyramidal cells in the rat hippocampus: serial electron microscopy with reference to their biophysical characteristics , 1989, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[53]  K. Harris,et al.  Dendritic spines of rat cerebellar Purkinje cells: serial electron microscopy with reference to their biophysical characteristics , 1988, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[54]  P. Greengard,et al.  Synapsin I (protein I), a nerve terminal-specific phosphoprotein. III. Its association with synaptic vesicles studied in a highly purified synaptic vesicle preparation , 1983, The Journal of cell biology.

[55]  P. Camilli,et al.  Synapsin I (Protein I), a nerve terminal-specific phosphoprotein. II. Its specific association with synaptic vesicles demonstrated by immunocytochemistry in agarose-embedded synaptosomes , 1983, The Journal of cell biology.

[56]  P Siekevitz,et al.  The structure of postsynaptic densities isolated from dog cerebral cortex: II. characterization and arrangement of some of the major proteins within the structure , 1977, The Journal of cell biology.

[57]  B. Katz,et al.  Spontaneous subthreshold activity at motor nerve endings , 1952, The Journal of physiology.

[58]  R. Weinberg,et al.  Interaction between GRIP and liprin-alpha/SYD2 is required for AMPA receptor targeting. , 2002, Neuron.

[59]  D. Van Vactor,et al.  Drosophila liprin-alpha and the receptor phosphatase Dlar control synapse morphogenesis. , 2002, Neuron.

[60]  S. B. Kater,et al.  Dendritic spines: cellular specializations imparting both stability and flexibility to synaptic function. , 1994, Annual review of neuroscience.

[61]  E. Gelmann,et al.  Alterations in beta-catenin phosphorylation and plakoglobin expression in human breast cancer cells. , 1994, Cancer research.

[62]  M. Takeichi,et al.  Cadherins: a molecular family important in selective cell-cell adhesion. , 1990, Annual review of biochemistry.

[63]  D. O. Hebb,et al.  The organization of behavior , 1988 .

[64]  F. Attneave,et al.  The Organization of Behavior: A Neuropsychological Theory , 1949 .