Sodium boiling experiments in a seven-pin bundle: Flow patterns and two-phase pressure drop

Two series of quasi-steady state sodium boiling experiments have been carried out in an electrically heated seven-pin bundle. The power levels (130–170 and 30–40 W/cm2) and other test conditions were selected to correspond to the core and radial breeder zones of a typical LMFBR. The test procedure involved the gradual reduction of mass flow rate through the bundle in a simulation of the consequences of a slowly growing blockage in the lower part of a reactor subassembly. By this means it was possible to study the development of quasi-steady state boiling up to the onset of permanent dryout. The results obtained provide information on flow regimes in the two-phase region, vapour qualities and flow rates at which cooling of the bundle can be effectively maintained, and the ultimate incidence of dryout. A relation for the two-phase pressure drop multiplier obtained from adiabatic pressure drop measurements in this geometry is given and compared with earlier results from single-channel geometry tests.