Airborne laser scanning of forest resources: An overview of research in Italy as a commentary case study

Abstract This article reviews the recent literature concerning airborne laser scanning for forestry purposes in Italy, and presents the current methodologies used to extract forest characteristics from discrete return ALS (Airborne Laser Scanning) data. Increasing interest in ALS data is currently being shown, especially for remote sensing-based forest inventories in Italy; the driving force for this interest is the possibility of reducing costs and providing more accurate and efficient estimation of forest characteristics. This review covers a period of approximately ten years, from the first application of laser scanning for forestry purposes in 2003 to the present day, and shows that there are numerous ongoing research activities which use these technologies for the assessment of forest attributes (e.g., number of trees, mean tree height, stem volume) and ecological issues (e.g., gap identification, fuel model detection). The basic approaches – such as single tree detection and area-based modeling – have been widely examined and commented in order to explore the trend of methods in these technologies, including their applicability and performance. Finally this paper outlines and comments some of the common problems encountered in operational use of laser scanning in Italy, offering potentially useful guidelines and solutions for other countries with similar conditions, under a rather variable environmental framework comprising Alpine, temperate and Mediterranean forest ecosystems.

[1]  Lorenzo Bruzzone,et al.  A System for the Estimation of Single-Tree Stem Diameter and Volume Using Multireturn LIDAR Data , 2011, IEEE Transactions on Geoscience and Remote Sensing.

[2]  E. Næsset Accuracy of forest inventory using airborne laser scanning: evaluating the first nordic full-scale operational project , 2004 .

[3]  M. Nieuwenhuis,et al.  Retrieval of forest structural parameters using LiDAR remote sensing , 2010, European Journal of Forest Research.

[4]  S. Reutebuch,et al.  Light detection and ranging (LIDAR): an emerging tool for multiple resource inventory. , 2005 .

[5]  Piermaria Corona,et al.  Area-based assessment of forest standing volume by field measurements and airborne laser scanner data , 2009 .

[6]  Marco Moriondo,et al.  Use of ground and LiDAR data to model the NPP of a Mediterranean pine forest , 2011 .

[7]  Ron Kohavi,et al.  Wrappers for Feature Subset Selection , 1997, Artif. Intell..

[8]  Alessandro Montaghi,et al.  Use of ETM+ images to extend stem volume estimates obtained from LiDAR data , 2011 .

[9]  Robert C. Parker,et al.  An Application of LiDAR in a Double-Sample Forest Inventory , 2004 .

[10]  M. Nilsson Estimation of tree heights and stand volume using an airborne lidar system , 1996 .

[11]  W. Krabill,et al.  Gross-merchantable timber volume estimation using an airborne lidar system , 1986 .

[12]  Lorenzo Bruzzone,et al.  Mapping and modeling forest tree volume using forest inventory and airborne laser scanning , 2011, European Journal of Forest Research.

[13]  Francesco Pirotti,et al.  Analysis of full-waveform LiDAR data for forestry applications: a review of investigations and methods , 2011 .

[14]  E. Næsset,et al.  Estimating tree heights and number of stems in young forest stands using airborne laser scanner data , 2001 .

[15]  Alistair M. S. Smith,et al.  Discrete Return Lidar in Natural Resources: Recommendations for Project Planning, Data Processing, and Deliverables , 2009, Remote. Sens..

[16]  R. Nelson,et al.  Model-based inference for biomass estimation in a LiDAR sample survey in Hedmark County, Norway , 2011 .

[17]  Terje Gobakken,et al.  Sampling and Mapping Forest Volume and Biomass Using Airborne LIDARs , 2009 .

[18]  Håkan Olsson,et al.  Prediction of tree biomass in the forest-tundra ecotone using airborne laser scanning , 2012 .

[19]  W. Cohen,et al.  Lidar Remote Sensing for Ecosystem Studies , 2002 .

[20]  S. Durrieu,et al.  Advanced full-waveform lidar data echo detection: Assessing quality of derived terrain and tree height models in an alpine coniferous forest , 2009 .

[21]  P. Krzystek,et al.  Tree species classification and estimation of stem volume and DBH based on single tree extraction by exploiting airborne full-waveform LiDAR data , 2012 .

[22]  E. Næsset Airborne laser scanning as a method in operational forest inventory: Status of accuracy assessments accomplished in Scandinavia , 2007 .

[23]  A. Getis The Analysis of Spatial Association by Use of Distance Statistics , 2010 .

[24]  Ross A. Hill,et al.  Quality assurance and quality control procedures of airborne scanning LiDAR for a nation-wide carbon inventory of planted forests. , 2008 .

[25]  Sorin C. Popescu,et al.  Mapping surface fuel models using lidar and multispectral data fusion for fire behavior , 2008 .

[26]  David J. Harding,et al.  Lidar Altimeter Measurements of Canopy Structure: Methods and Validation for Closed Canopy, Broadleaf Forests , 2013 .

[27]  Lewis Graham,et al.  The LAS 1.1 Standard , 2005 .

[28]  Benjamin Koetz,et al.  Multi-source land cover classification for forest fire management based on imaging spectrometry and LiDAR data , 2008 .

[29]  Jean Serra,et al.  Image Analysis and Mathematical Morphology , 1983 .

[30]  Michele Dalponte,et al.  The role of ground reference data collection in the prediction of stem volume with LiDAR data in mountain areas , 2011 .

[31]  Mikko Inkinen,et al.  A segmentation-based method to retrieve stem volume estimates from 3-D tree height models produced by laser scanners , 2001, IEEE Trans. Geosci. Remote. Sens..

[32]  A Abramo,et al.  Dalla dendrometria diametrica alla dendrometria ipsometrica: stima del volume degli alberi da rilievi laser-scanning , 2007 .

[33]  J. Hyyppä,et al.  Review of methods of small‐footprint airborne laser scanning for extracting forest inventory data in boreal forests , 2008 .

[34]  Piermaria Corona,et al.  Area-based lidar-assisted estimation of forest standing volume , 2008 .

[35]  E. Næsset,et al.  Weibull and percentile models for lidar-based estimation of basal area distribution , 2005 .

[36]  Leo Breiman,et al.  Random Forests , 2001, Machine Learning.

[37]  Emilio Chuvieco,et al.  Estimation of Fuel Conditions for Fire Danger Assessment , 2009 .

[38]  E. Næsset Predicting forest stand characteristics with airborne scanning laser using a practical two-stage procedure and field data , 2002 .

[39]  Göran Ståhl,et al.  Model-assisted estimation of biomass in a LiDAR sample survey in Hedmark County, NorwayThis article is one of a selection of papers from Extending Forest Inventory and Monitoring over Space and Time. , 2011 .

[40]  Lorenzo Bruzzone,et al.  Analysis on the Use of Multiple Returns LiDAR Data for the Estimation of Tree Stems Volume , 2009, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing.

[41]  Håkan Olsson,et al.  Combining optical satellite data and airborne laser scanner data for vegetation classification , 2012 .

[42]  Isabelle Guyon,et al.  An Introduction to Variable and Feature Selection , 2003, J. Mach. Learn. Res..

[43]  Andrew Thomas Hudak,et al.  LiDAR Utility for Natural Resource Managers , 2009, Remote. Sens..

[44]  J. Reitberger,et al.  Analysis of full waveform LIDAR data for the classification of deciduous and coniferous trees , 2008 .

[45]  P. Axelsson DEM Generation from Laser Scanner Data Using Adaptive TIN Models , 2000 .

[46]  D. Mannes,et al.  A national overview of airborne lidar application in Australian forest agencies. , 2011 .

[47]  Marco Bindi,et al.  Modelling the forest carbon budget of a Mediterranean region through the integration of ground and satellite data , 2009 .

[48]  Peter Axelsson,et al.  Processing of laser scanner data-algorithms and applications , 1999 .

[49]  Lorenzo Bruzzone,et al.  Fusion of Hyperspectral and LIDAR Remote Sensing Data for Classification of Complex Forest Areas , 2008, IEEE Transactions on Geoscience and Remote Sensing.

[50]  Aloysius Wehr,et al.  Airborne laser scanning—an introduction and overview , 1999 .

[51]  J. Holmgren Prediction of tree height, basal area and stem volume in forest stands using airborne laser scanning , 2004 .

[52]  F. M. Danson,et al.  Multispectral and LiDAR data fusion for fuel type mapping using Support Vector Machine and decision rules , 2011 .

[53]  Pat Langley,et al.  Selection of Relevant Features and Examples in Machine Learning , 1997, Artif. Intell..

[54]  Juha Hyyppä,et al.  Combination of individual tree detection and area-based approach in imputation of forest variables using airborne laser data , 2012 .

[55]  J. Holmgren,et al.  Estimation of tree lists from airborne laser scanning by combining single-tree and area-based methods , 2010 .

[56]  N. Coops,et al.  High Spatial Resolution Remotely Sensed Data for Ecosystem Characterization , 2004 .

[57]  Ron Kohavi,et al.  Wrappers for feature selection , 1997 .

[58]  Mark O. Kimberley,et al.  Airborne scanning LiDAR in a double sampling forest carbon inventory , 2012 .

[59]  M. Flood,et al.  LiDAR remote sensing of forest structure , 2003 .

[60]  E. Næsset,et al.  Laser scanning of forest resources: the nordic experience , 2004 .

[61]  B. Koch,et al.  Non-parametric prediction and mapping of standing timber volume and biomass in a temperate forest: application of multiple optical/LiDAR-derived predictors , 2010 .

[62]  D. A. Hill,et al.  Combined high-density lidar and multispectral imagery for individual tree crown analysis , 2003 .

[63]  Paul A. Longley,et al.  Quantifying Interpolation Errors in Urban Airborne Laser Scanning Models , 2005 .

[64]  A. Petroselli LIDAR Data and Hydrological Applications at the Basin Scale , 2012 .

[65]  Erik Næsset,et al.  Assessing sensor effects and effects of leaf-off and leaf-on canopy conditions on biophysical stand properties derived from small-footprint airborne laser data , 2005 .

[66]  R. Dubayah,et al.  Integrating waveform lidar with hyperspectral imagery for inventory of a northern temperate forest , 2008 .

[67]  Erik Næsset,et al.  Estimating above-ground biomass in young forests with airborne laser scanning , 2011 .

[68]  M. Neteler,et al.  Fusion of airborne LiDAR and satellite multispectral data for the estimation of timber volume in the Southern Alps , 2011 .

[69]  M. Lefsky,et al.  Laser altimeter canopy height profiles: methods and validation for closed-canopy, broadleaf forests , 2001 .

[70]  M. Wulder,et al.  THE CURRENT STATUS OF LASER SCANNING OF FORESTS IN CANADA AND AUSTRALIA , 2003 .

[71]  P. Atkinson,et al.  Deriving DSMs from LiDAR data with kriging , 2002 .

[72]  S. Reutebuch,et al.  Estimating forest canopy fuel parameters using LIDAR data , 2005 .

[73]  M. Maltamo,et al.  Combining ALS and NFI training data for forest management planning: a case study in Kuortane, Western Finland , 2009, European Journal of Forest Research.

[74]  Piermaria Corona,et al.  Airborne Laser Scanning to support forest resource management under alpine, temperate and Mediterranean environments in Italy , 2012 .

[75]  L. Monika Moskal,et al.  Fusion of LiDAR and imagery for estimating forest canopy fuels , 2010 .

[76]  George Alan Blackburn,et al.  Quantifying the spatial properties of forest canopy gaps using LiDAR imagery and GIS , 2004 .

[77]  E. Næsset Practical large-scale forest stand inventory using a small-footprint airborne scanning laser , 2004 .

[78]  E. Næsset Estimating timber volume of forest stands using airborne laser scanner data , 1997 .

[79]  P. Corona Integration of forest mapping and inventory to support forest management , 2010 .

[80]  R. Nelson,et al.  Determining forest canopy characteristics using airborne laser data , 1984 .

[81]  Francesco Sepic,et al.  Automatic detection of dominated vegetation under canopy using Airborne Laser Scanning data , 2008 .

[82]  E. Anderson,et al.  LIDAR density and linear interpolator effects on elevation estimates , 2005 .

[83]  G. Scrinzi,et al.  Stima su base LiDAR delle provvigioni legnose forestali: uno studio per la Foresta di Paneveggio , 2010 .

[84]  P. Gessler,et al.  Regression modeling and mapping of coniferous forest basal area and tree density from discrete-return lidar and multispectral satellite data , 2006 .

[85]  S. Popescu,et al.  Measuring individual tree crown diameter with lidar and assessing its influence on estimating forest volume and biomass , 2003 .

[86]  Fabio Crosilla,et al.  Assessing the 3d Structure of the Single Crowns in Mixed Alpine Forests , 2007 .

[87]  E. Næsset Determination of mean tree height of forest stands using airborne laser scanner data , 1997 .

[88]  J. Hyyppä,et al.  EXPERIENCES AND POSSIBILITIES OF ALS BASED FOREST INVENTORY IN FINLAND , 2007 .

[89]  Benoît St-Onge,et al.  Spatially explicit characterization of boreal forest gap dynamics using multi-temporal lidar data , 2008 .

[90]  Juha Hyyppä,et al.  Forest Inventory Using Small-Footprint Airborne LiDAR , 2008 .

[91]  W. Wagner,et al.  3D vegetation mapping using small‐footprint full‐waveform airborne laser scanners , 2008 .

[92]  Joanne C. White,et al.  Integrating profiling LIDAR with Landsat data for regional boreal forest canopy attribute estimation and change characterization , 2007 .