The least weakly compact cardinal can be unfoldable, weakly measurable and nearly $${\theta}$$θ-supercompact
暂无分享,去创建一个
Joel David Hamkins | Moti Gitik | Brent Cody | Jason A. Schanker | J. Hamkins | M. Gitik | Brent Cody
[1] Joel David Hamkins. Unfoldable Cardinals and The GCH , 2001, J. Symb. Log..
[2] Joel David Hamkins,et al. Diamond (on the regulars) can fail at any strongly unfoldable cardinal , 2006, Ann. Pure Appl. Log..
[3] Jason A. Schanker. Partial near supercompactness , 2013, Ann. Pure Appl. Log..
[4] Thomas A. Johnstone. Strongly unfoldable cardinals made indestructible , 2008, Journal of Symbolic Logic.
[5] Philip D. Welch,et al. Ramsey-like cardinals II , 2011, J. Symb. Log..
[6] Menachem Magidor. How large is the first strongly compact cardinal? or a study on identity crises , 1976 .
[7] Andrés Villaveces. Chains of End Elementary Extensions of Models of Set Theory , 1998, J. Symb. Log..
[8] Jason A. Schanker. Weakly measurable cardinals , 2011, Math. Log. Q..
[9] Joel David Hamkins,et al. Indestructible Strong Unfoldability , 2010, Notre Dame J. Formal Log..
[10] Jonas Reitz. The ground axiom , 2007, J. Symb. Log..
[11] Joel David Hamkins. The Lottery Preparation , 2000, Ann. Pure Appl. Log..
[12] Kenneth Kunen,et al. Saturated ideals , 1978, Journal of Symbolic Logic.