Robust adaptive control of a class of nonlinear systems including actuator hysteresis with Prandtl-Ishlinskii presentations
暂无分享,去创建一个
[1] M. Krasnosel’skiǐ,et al. Systems with Hysteresis , 1989 .
[2] Walter Tollmien,et al. Ein Gedankenmodell zur kinetischen Theorie der festen Körper , 1961 .
[3] Martin Brokate. Some BV Properties of the Preisach Hysteresis Operator , 1989 .
[4] M. Brokate,et al. Phase Transitions and Hysteresis , 1994 .
[5] M. Brokate,et al. Hysteresis and Phase Transitions , 1996 .
[6] Frank L. Lewis,et al. Adaptive Control of Nonsmooth Dynamic Systems , 2001 .
[7] Xiaobo Tan,et al. Control of hysteresis: theory and experimental results , 2001, SPIE Smart Structures and Materials + Nondestructive Evaluation and Health Monitoring.
[8] W. Galinaitis. Two Methods for Modeling Scalar Hysteresis and their use in Controlling Actuators with Hysteresis , 1999 .
[9] Paolo Nistri,et al. Mathematical Models for Hysteresis , 1993, SIAM Rev..
[10] Rob Gorbet,et al. Control of hysteretic systems with Preisach representations , 1997 .
[11] Gang Tao,et al. Adaptive control of plants with unknown hystereses , 1995 .
[12] J. Wen,et al. Preisach modeling of piezoceramic and shape memory alloy hysteresis , 1995, Proceedings of International Conference on Control Applications.
[13] Chengyu Cao,et al. Parameter convergence in systems with convex/concave parameterization , 2000, Proceedings of the 2000 American Control Conference. ACC (IEEE Cat. No.00CH36334).
[14] Weiping Li,et al. Applied Nonlinear Control , 1991 .
[15] Harvey Thomas Banks,et al. Hysteresis modeling in smart material systems , 1998 .
[16] Anuradha M. Annaswamy,et al. Adaptation in the presence of a general nonlinear parameterization: an error model approach , 1999, IEEE Trans. Autom. Control..
[17] K. Kuhnen,et al. Inverse control of systems with hysteresis and creep , 2001 .