Robust adaptive control of a class of nonlinear systems including actuator hysteresis with Prandtl-Ishlinskii presentations

This paper deals with robust adaptive control of a class of nonlinear systems preceded by unknown hysteresis nonlinearities. By using a Prandtl-Ishlinskii model with play and stop operators, we attempt to fuse the model of hysteresis with the available control techniques without necessarily constructing a hysteresis inverse. A robust adaptive control scheme is therefore proposed. The global stability of the adaptive system and tracking a desired trajectory to a certain precision are achieved. Simulation results attained for a nonlinear system are presented to illustrate and further validate the effectiveness of the proposed approach.

[1]  M. Krasnosel’skiǐ,et al.  Systems with Hysteresis , 1989 .

[2]  Walter Tollmien,et al.  Ein Gedankenmodell zur kinetischen Theorie der festen Körper , 1961 .

[3]  Martin Brokate Some BV Properties of the Preisach Hysteresis Operator , 1989 .

[4]  M. Brokate,et al.  Phase Transitions and Hysteresis , 1994 .

[5]  M. Brokate,et al.  Hysteresis and Phase Transitions , 1996 .

[6]  Frank L. Lewis,et al.  Adaptive Control of Nonsmooth Dynamic Systems , 2001 .

[7]  Xiaobo Tan,et al.  Control of hysteresis: theory and experimental results , 2001, SPIE Smart Structures and Materials + Nondestructive Evaluation and Health Monitoring.

[8]  W. Galinaitis Two Methods for Modeling Scalar Hysteresis and their use in Controlling Actuators with Hysteresis , 1999 .

[9]  Paolo Nistri,et al.  Mathematical Models for Hysteresis , 1993, SIAM Rev..

[10]  Rob Gorbet,et al.  Control of hysteretic systems with Preisach representations , 1997 .

[11]  Gang Tao,et al.  Adaptive control of plants with unknown hystereses , 1995 .

[12]  J. Wen,et al.  Preisach modeling of piezoceramic and shape memory alloy hysteresis , 1995, Proceedings of International Conference on Control Applications.

[13]  Chengyu Cao,et al.  Parameter convergence in systems with convex/concave parameterization , 2000, Proceedings of the 2000 American Control Conference. ACC (IEEE Cat. No.00CH36334).

[14]  Weiping Li,et al.  Applied Nonlinear Control , 1991 .

[15]  Harvey Thomas Banks,et al.  Hysteresis modeling in smart material systems , 1998 .

[16]  Anuradha M. Annaswamy,et al.  Adaptation in the presence of a general nonlinear parameterization: an error model approach , 1999, IEEE Trans. Autom. Control..

[17]  K. Kuhnen,et al.  Inverse control of systems with hysteresis and creep , 2001 .