Modal Logics and mu-Calculi: An Introduction

We briefly survey the background and history of modal and temporal logics. We then concentrate on the modal mu-calculus, a modal logic which subsumes most other commonly used logics. We provide an informal introduction, followed by a summary of the main theoretical issues. We then look at model-checking, and finally at the relationship of modal logics to other formalisms.

[1]  G. Winskel,et al.  A Compositional Proof System for the Modal mu-Calculus , 1994 .

[2]  Wolfgang Thomas,et al.  Languages, Automata, and Logic , 1997, Handbook of Formal Languages.

[3]  Bernhard Steffen,et al.  Model Checking for Context-Free Processes , 1992, CONCUR.

[4]  Julian C. Bradfield The Modal µ-Calculus Alternation Hierarchy is Strict , 1998, Theor. Comput. Sci..

[5]  Julian Bradfield Verifying Temporal Properties of Systems , 1992, Progress in Theoretical Computer Science.

[6]  Edmund M. Clarke,et al.  Characterizing Correctness Properties of Parallel Programs Using Fixpoints , 1980, ICALP.

[7]  Hans Hüttel SnS Can be Modally Characterized , 1990, Theor. Comput. Sci..

[8]  Edmund M. Clarke,et al.  Design and Synthesis of Synchronization Skeletons Using Branching-Time Temporal Logic , 1981, Logic of Programs.

[9]  Damian Niwinski On Fixed-Point Clones (Extended Abstract) , 1986, ICALP.

[10]  Augustus De Morgan A Budget of Paradoxes , 1873, Nature.

[11]  Julian C. Bradfield Simplifying the Modal Mu-Calculus Alternation Hierarchy , 1998, STACS.

[12]  Somesh Jha,et al.  An Improved Algorithm for the Evaluation of Fixpoint Expressions , 1994, Theor. Comput. Sci..

[13]  Damian Niwinski,et al.  Fixed Point Characterization of Büchi Automata on Infinite Trees , 1990, J. Inf. Process. Cybern..

[14]  David Walker,et al.  Local Model Checking in the Modal mu-Calculus , 1991, Theor. Comput. Sci..

[15]  A. Prasad Sistla,et al.  On Model-Checking for Fragments of µ-Calculus , 1993, CAV.

[16]  Moshe Y. Vardi A temporal fixpoint calculus , 1988, POPL '88.

[17]  Igor Walukiewicz,et al.  Completeness of Kozen's Axiomatisation of the Propositional µ-Calculus , 2000, Inf. Comput..

[18]  Zohar Manna,et al.  Formalization of properties of recursively defined functions , 1969, STOC '69.

[19]  Mads Dam CTL* and ECTL* as Fragments of the Modal mu-Calculus , 1994, Theor. Comput. Sci..

[20]  J. W. de Bakker,et al.  Mathematical theory of program correctness , 1980, Prentice-Hall international series in computer science.

[21]  C. R. Ramakrishnan,et al.  Fully Local and Efficient Evaluation of Alternating Fixed Points (Extended Abstract) , 1998, TACAS.

[22]  E. Allen Emerson,et al.  An Automata Theoretic Decision Procedure for the Propositional Mu-Calculus , 1989, Inf. Comput..

[23]  H. Andersen Verification of Temporal Properties of Concurrent Systems , 1993 .

[24]  Robert W. Floyd,et al.  Assigning Meanings to Programs , 1993 .

[25]  Igor Walukiewicz,et al.  On the Expressive Completeness of the Propositional mu-Calculus with Respect to Monadic Second Order Logic , 1996, CONCUR.

[26]  Colin Stirling,et al.  Modal and temporal logics , 1993, LICS 1993.

[27]  Leslie Lamport,et al.  Proving the Correctness of Multiprocess Programs , 1977, IEEE Transactions on Software Engineering.

[28]  Johan Lewi,et al.  Efficient Local Correctness Checking for Single and Alternating Boolean Equation Systems , 1994, ICALP.

[29]  J. R. Büchi On a Decision Method in Restricted Second Order Arithmetic , 1990 .

[30]  Amir Pnueli,et al.  Propositional dynamic logic of context-free programs , 1981, 22nd Annual Symposium on Foundations of Computer Science (sfcs 1981).

[31]  Faron Moller,et al.  Verification on Infinite Structures , 2001, Handbook of Process Algebra.

[32]  Igor Walukiewicz,et al.  Completeness of Kozen's axiomatisation of the propositional /spl mu/-calculus , 1995, Proceedings of Tenth Annual IEEE Symposium on Logic in Computer Science.

[33]  David E. Muller,et al.  The Theory of Ends, Pushdown Automata, and Second-Order Logic , 1985, Theor. Comput. Sci..

[34]  Dexter Kozen,et al.  A finite model theorem for the propositional μ-calculus , 1988, Stud Logica.

[35]  David Park,et al.  Concurrency and Automata on Infinite Sequences , 1981, Theoretical Computer Science.

[36]  Amir Pnueli The Temporal Semantics of Concurrent Programs , 1981, Theor. Comput. Sci..

[37]  Dexter Kozen,et al.  RESULTS ON THE PROPOSITIONAL’p-CALCULUS , 2001 .

[38]  Amir Pnueli,et al.  Now you may compose temporal logic specifications , 1984, STOC '84.

[39]  WOJCIECH PENCZEK,et al.  Temporal Logics for Trace Systems: On Automated Verification , 1993, Int. J. Found. Comput. Sci..

[40]  Robert S. Streett Propositional Dynamic Logic of looping and converse , 1981, STOC '81.

[41]  Zohar Manna,et al.  How to cook a temporal proof system for your pet language , 1983, POPL '83.

[42]  C. A. R. Hoare,et al.  An axiomatic basis for computer programming , 1969, CACM.

[43]  Robin Milner,et al.  On Observing Nondeterminism and Concurrency , 1980, ICALP.

[44]  M. Rabin Decidability of second-order theories and automata on infinite trees. , 1969 .

[45]  Yuri Gurevich,et al.  Trees, automata, and games , 1982, STOC '82.

[46]  Colin Stirling,et al.  Modal and Temporal Logics for Processes , 1996, Banff Higher Order Workshop.

[47]  Richard E. Ladner,et al.  Propositional Dynamic Logic of Regular Programs , 1979, J. Comput. Syst. Sci..

[48]  Colin Stirling,et al.  Local Model Checking for Infinite State Spaces , 1992, Theor. Comput. Sci..

[49]  Vaughan R. Pratt,et al.  A Near-Optimal Method for Reasoning about Action , 1980, J. Comput. Syst. Sci..

[50]  Chin-Laung Lei,et al.  Efficient Model Checking in Fragments of the Propositional Mu-Calculus (Extended Abstract) , 1986, LICS.

[51]  P. S. Thiagarajan,et al.  A trace based extension of linear time temporal logic , 1994, Proceedings Ninth Annual IEEE Symposium on Logic in Computer Science.

[52]  E. Allen Emerson,et al.  Tree automata, mu-calculus and determinacy , 1991, [1991] Proceedings 32nd Annual Symposium of Foundations of Computer Science.

[53]  Pierre Wolper,et al.  Yet Another Process Logic (Preliminary Version) , 1983, Logic of Programs.

[54]  Damian Niwinski,et al.  Fixed Point Characterization of Infinite Behavior of Finite-State Systems , 1997, Theor. Comput. Sci..

[55]  Javier Esparza,et al.  An Effective Tableau System for the Linear Time µ-Calculus , 1996, ICALP.

[56]  Rohit Parikh,et al.  An Elementary Proof of the Completness of PDL , 1981, Theor. Comput. Sci..

[57]  David Walker,et al.  CCS, Liveness, and Local Model Checking in the Linear Time Mu-Calculus , 1989, Automatic Verification Methods for Finite State Systems.

[58]  M. Rabin Weakly Definable Relations and Special Automata , 1970 .

[59]  Peter Niebert,et al.  A v-Calculus with Local Views for Systems of Sequential Agents , 1995, MFCS.

[60]  Howard Barringer,et al.  Temporal Logic with Fixed Points , 1987, Temporal Logic in Specification.

[61]  Julian C. Bradfield A Proof Assistant for Symbolic Model-Checking , 1992, CAV.

[62]  Robin Milner,et al.  A Calculus of Communicating Systems , 1980, Lecture Notes in Computer Science.

[63]  Angelika Mader,et al.  Verification of modal properties using Boolean equation systems , 1997 .

[64]  David Janin,et al.  Automata for the mu-calculus and Related Results , 1995 .

[65]  E. Allen Emerson,et al.  Temporal and Modal Logic , 1991, Handbook of Theoretical Computer Science, Volume B: Formal Models and Sematics.

[66]  Glynn Winskel,et al.  A compositional proof system for the modal /spl mu/-calculus , 1994, Proceedings Ninth Annual IEEE Symposium on Logic in Computer Science.

[67]  J. Van Leeuwen,et al.  Handbook of theoretical computer science - Part A: Algorithms and complexity; Part B: Formal models and semantics , 1990 .

[68]  Roope Kaivola On Modal mu-Calculus and Büchi Tree Automata , 1995, Inf. Process. Lett..