Inductive Logic and Statistics

Publisher Summary An inductive logic refers to a system of inference that describes the relation between propositions on data and propositions that extend beyond the data. Statistics, on the other hand, is a mathematical discipline that describes procedures for deriving results about a population from sample data. Inductive logic is largely dominated by the Carnapian programme, but the statisticians generally do not recognize Carnapian inductive logic as a discipline. This chapter shows that Carnapian inductive logic can be developed to encompass inference over statistical hypotheses and that the resulting inductive logic can partly capture statistical procedures. It presents a unified picture of inductive inference to which both inductive logic and statistics, past or present, can be related. It introduces a general notion of probabilistic inductive inference. The chapter also illustrates Carnapian inductive logic and relates it to Bayesian statistical inference via de Finetti's representation theorem. It provides a description of two classical statistical procedures—namely, maximum likelihood estimation and Neyman–Pearson hypothesis testing, and explores the ways these methods can be accommodated in extended inductive logic.

[1]  Rudolf Carnap,et al.  The continuum of inductive methods , 1952 .

[2]  Jeff B. Paris,et al.  Atom Exchangeability and Instantial Relevance , 2009, J. Philos. Log..

[3]  Roberto Festa,et al.  Optimum Inductive Methods , 1993 .

[4]  Lawrence Sklar,et al.  Philosophical problems of statistical inference , 1981 .

[5]  I. Douven A New Solution to the Paradoxes of Rational Acceptability , 2002, The British Journal for the Philosophy of Science.

[6]  J. Charles Kerkering,et al.  Subjective and Objective Bayesian Statistics: Principles, Models, and Applications , 2003, Technometrics.

[7]  B. D. Finetti La prévision : ses lois logiques, ses sources subjectives , 1937 .

[8]  R. A. Fisher,et al.  Statistical methods and scientific inference. , 1957 .

[9]  Richard E. Neapolitan,et al.  Learning Bayesian networks , 2007, KDD '07.

[10]  A. P. Dawid,et al.  The Functional-Model Basis of Fiducial Inference , 1982 .

[11]  S. Zabell W. E. Johnson's "Sufficientness" Postulate , 1982 .

[12]  G. Shafer The Enterprise of Knowledge: An Essay on Knowledge, Credal Probability, and Chance , 1982 .

[13]  Alfréd Rényi,et al.  Probability Theory , 1970 .

[14]  N. Reid,et al.  Likelihood , 1993 .

[15]  P. Maher Probabilities For Two Properties , 2000 .

[16]  Teddy Seidenfeld Philosophical Problems of Statistical Inference: Learning from R.A. Fisher , 1979 .

[17]  C. D. Litton,et al.  Comparative Statistical Inference. , 1975 .

[18]  B. Skyrms Carnapian inductive logic for Markov chains , 1991, Erkenntnis.

[19]  Jerzy Neyman,et al.  Joint Statistical Papers , 1967 .

[20]  Constantin A. Drossos Probability and Logic , 2004 .

[21]  H. Jeffreys Logical Foundations of Probability , 1952, Nature.

[22]  N. Campbell,et al.  Scientific Inference , 1931, Nature.

[23]  I. Levi,et al.  The Enterprise of Knowledge: An Essay on Knowledge, Credal Probability, and Chance , 1983 .

[24]  J. Romeijn Handbook for the Philosophy of Science: Philosophy of Statistics , 2011 .

[25]  Niels Henrik David Bohr,et al.  Proceedings of the Cambridge Philosophical Society , 1843 .

[26]  Brian Skyrms,et al.  Carnapian inductive logic and Bayesian statistics , 1996 .

[27]  J. Romeijn Analogical Predictions for Explicit Similarity , 2006 .

[28]  Gregory R. Wheeler,et al.  Rational Acceptance and Conjunctive/Disjunctive Absorption , 2006, J. Log. Lang. Inf..

[29]  J. Romeyn Hypotheses and Inductive Predictions , 2004 .

[30]  Jan-Willem Romeijn,et al.  Bayesian inductive logic , 2005 .

[31]  R. Festa Analogy and exchangeability in predictive inferences , 1996, Erkenntnis.

[32]  Jan-Willem Romeijn,et al.  Hypotheses and Inductive Predictions , 2004, Synthese.

[33]  W. E. Johnson I.—PROBABILITY: THE DEDUCTIVE AND INDUCTIVE PROBLEMS , 1932 .

[34]  G. A. Barnard,et al.  THE LOGIC OF STATISTICAL INFERENCE1 , 1972, The British Journal for the Philosophy of Science.

[35]  B. Sauphanor The logical foundations of statistical inference , 1974 .

[36]  Jan-Willem Romeijn,et al.  Probabilistic Logics and Probabilistic Networks , 2010 .

[37]  T. E. Sterne,et al.  Inverse Probability , 1930, Nature.

[38]  M. S. Bartlett,et al.  Statistical methods and scientific inference. , 1957 .

[39]  R. Fisher THE FIDUCIAL ARGUMENT IN STATISTICAL INFERENCE , 1935 .