Mid- to high-valent imido and nitrido complexes of iron.

This short review summarizes recent advances in the synthesis and reactivity of iron imides and nitrides. Both monometallic and multimetallic assemblies featuring these moieties are discussed. Recent synthetic approaches have led to the availability of new mid- to high-valent iron imides and nitrides, allowing us to begin assembling models to describe the factors influencing their relative stabilities and reactivity patterns.

[1]  L. Que,et al.  Models of high-valent intermediates of non-heme diiron alkane monooxygenases: electronic structure of a bis(micro-oxo)diron(IV) complex with locally low-spin metal centers. , 2004, Angewandte Chemie.

[2]  M. D. Hopkins,et al.  Vibrational Spectroscopy and Normal-Mode Analysis of Tungsten−Methylidyne Complexes. Insight into the Nature of the M⋮CH Bonds , 2000 .

[3]  Steven D. Brown,et al.  Hydrogenolysis of [PhBP3]Fe⋮N-p-tolyl: Probing the Reactivity of an Iron Imide with H2 , 2004 .

[4]  James Terner,et al.  Valence-tautomerism in high-valent iron and manganese porphyrins , 2001, JBIC Journal of Biological Inorganic Chemistry.

[5]  I. Guzei,et al.  CHALCOGEN ATOM TRANSFER TO A METAL NITRIDO. THE FIRST TRANSITION METAL SELENONITROSYL COMPLEX , 1998 .

[6]  Yilin Hu,et al.  Formation and insertion of the nitrogenase iron-molybdenum cofactor. , 2004, Chemical reviews.

[7]  D. Rees,et al.  Nitrogenase MoFe-Protein at 1.16 Å Resolution: A Central Ligand in the FeMo-Cofactor , 2002, Science.

[8]  W. A. Nugent,et al.  Transition metal complexes containing organoimido (nr) and related ligands , 1980 .

[9]  Jeremiah S. Duncan,et al.  Iron-arylimide clusters [Fe(m)()(NAr)(n)Cl(4)](2)(-) (m, n = 2, 2; 3, 4; 4, 4) from a ferric amide precursor: synthesis, characterization, and comparison to Fe-S chemistry. , 2003, Inorganic chemistry.

[10]  R. Doedens Structural studies of organonitrogen compounds of the transition elements. II. Crystal and molecular structure of Di-.mu.3-methylimidotris(tricarbonyliron), (CH3N)2Fe3(CO)9 , 1969 .

[11]  D. Powell,et al.  Preparation of iron amido complexes via putative Fe(IV) imido intermediates. , 2005, Journal of the American Chemical Society.

[12]  Christopher C. Cummins,et al.  Reductive cleavage and related reactions leading to molybdenum–element multiple bonds: new pathways offered by three-coordinate molybdenum(III) , 1998 .

[13]  K. Nakamoto,et al.  Resonance raman spectra of nitridoiron(V) porphyrin intermediates produced by laser photolysis , 1989 .

[14]  D. Summerville,et al.  Metal-metal interactions involving metalloporphyrins. III. Conversion of tetraphenylporphinatoiron(III) azide to an N-bridged hemin dimer. , 1976, Journal of the American Chemical Society.

[15]  R. Bergman,et al.  Synthesis, structure, and reactivity of a monomeric pentamethylcyclopentadienyliridium(III) imido complex , 1989 .

[16]  J. Peters,et al.  A tetrahedrally coordinated L3Fe-Nx platform that accommodates terminal nitride (Fe(IV)N) and dinitrogen (Fe(I)-N2-Fe(I)) ligands. , 2004, Journal of the American Chemical Society.

[17]  J. Strähle,et al.  The Transition Metal‐Nitrogen Multiple Bond , 1981 .

[18]  L. Seefeldt,et al.  Substrate interactions with nitrogenase: Fe versus Mo. , 2004, Biochemistry.

[19]  L. Que,et al.  Intramolecular aromatic amination through iron-mediated nitrene transfer. , 2003, Angewandte Chemie.

[20]  W. Gladfelter,et al.  SYNTHESIS AND REACTIVITY OF AN ANIONIC TETRAIRON NITRIDO CLUSTER. CRYSTAL AND MOLECULAR STRUCTURE OF BIS(TRIPHENYLPHOSPHIN)IMINIUM (DODECARBONYLNITRIDOTETRAFERRATE) , 2002 .

[21]  G. Trigiante,et al.  (.mu.-Nitrido)((tetraphenylporphyrinato)iron)((phthalocyaninato)iron) and Its Fe-Ru Analog: Redox Behavior and Characterization of New Fe(IV)-Containing Species. X-ray Crystal Structure of [(THF)(TPP)Fe-N-FePc(H2O)](I5).cntdot.2THF , 1995 .

[22]  R. H. Holm,et al.  Initial members of the family of molecular mid-valent high-nuclearity iron nitrides: [Fe4N2X10]4- and [Fe10N8X12]5- (X = Cl-, Br-). , 2005, Journal of the American Chemical Society.

[23]  Steven D. Brown,et al.  Heterolytic H2 activation mediated by low-coordinate L3Fe-(μ-N)-FeL3 complexes to generate Fe(μ-NH)(μ-H)Fe species , 2005 .

[24]  E. Carreira,et al.  Nitridomanganese(V) Complexes: Design, Preparation, and Use as Nitrogen Atom-Transfer Reagents , 1997 .

[25]  J. Groves,et al.  Activation and transfer of nitrogen from a nitridomanganese(V) porphyrin complex. Aza analog of epoxidation , 1983 .

[26]  K Wieghardt,et al.  Mononuclear (nitrido)iron(V) and (oxo)iron(IV) complexes via photolysis of [(cyclam-acetato)FeIII(N3)]+ and ozonolysis of [(cyclam-acetato)FeIII(O3SCF3)]+ in water/acetone mixtures. , 2000, Inorganic chemistry.

[27]  L. Seefeldt,et al.  The interstitial atom of the nitrogenase FeMo-cofactor: ENDOR and ESEEM show it is not an exchangeable nitrogen. , 2003, Journal of the American Chemical Society.

[28]  C. Rizzoli,et al.  Metal- and ligand-centered monoelectronic oxidation of mu-nitrido[((tetraphenylporphyrinato)manganese)phthalocyaninatoiron)], [(TPP)Mn-N-FePc]. X-ray crystal structure of the Fe(IV)-containing species [(THF)(TPP)Mn-N-FePc(H(2)O)](I(5))02THF. , 2001, Inorganic chemistry.

[29]  V. Miskowski,et al.  MOLECULAR STRUCTURES AND FT-RAMAN SPECTROSCOPY OF LUMINESCENT NIOBIUM AND TANTALUM ARYLIMIDO COMPOUNDS , 1997 .

[30]  K. Kadish,et al.  Synthesis, Chemical-Physical Characterization, and Redox Properties of a New Mixed-Ligand Heterobimetallic N-Bridged Dimer: (&mgr;-Nitrido)[((tetraphenylporphyrinato)manganese)((phthalocyaninato)iron)]. , 1998, Inorganic chemistry.

[31]  A. Verma,et al.  A Stable Terminal Imide on Iron , 2000 .

[32]  D. Fenske,et al.  Imidoverbrückte Eisencluster mit Heterocubanstruktur. Die Kristallstrukturen von [Li(THF)4][Li(THF)3][Fe4(μ3‐NPh)4Cl4], [Li(DME)3][Fe4(μ3‐NtBu)4Cl4], [Fe4(μ3‐NtBu)4Cl4] · Et3PNtBu, [Li(THF)4][Fe4(NHtBu)4(μ3‐NtBu)4], ∞1{[Li(THF)2]2[Fe2(μ‐NMes)2Cl4]} und [NnBu4]2[Fe2(μ‐NPh)2Cl4] , 2000 .

[33]  C. Cummins,et al.  Deprotonated 2,3:5,6-Dibenzo-7- aza bicyclo[2.2.1]hepta-2,5-diene as a Nitrido Nitrogen Source by Anthracene Elimination: Synthesis of an Iodide(nitride)chromium(VI) Complex. , 1998, Angewandte Chemie.

[34]  K. Dehnicke,et al.  N-HALOGENOIMIDO COMPLEXES OF TRANSITION METALS , 1993 .

[35]  R. H. Holm,et al.  Speculative synthetic chemistry and the nitrogenase problem , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[36]  Eckhard Bill,et al.  Photolysis of cis- and trans-[FeIII(cyclam)(N3)2]+ Complexes: Spectroscopic Characterization of a Nitridoiron(V) Species , 1999 .

[37]  Darryl S. Williams,et al.  Electronic Structure of Luminescent d(0) Niobium and Tantalum Imido Compounds cis,mer-M(NR)Cl(3)L(2). , 1998, Inorganic chemistry.

[38]  R. Bergman,et al.  Monomeric (pentamethylcyclopentadienyl)iridium imido compounds : synthesis, structure, and reactivity , 1991 .

[39]  L. Seefeldt,et al.  Trapping a hydrazine reduction intermediate on the nitrogenase active site. , 2005, Biochemistry.

[40]  K. Burgess,et al.  Metal-catalyzed epoxidations of alkenes with hydrogen peroxide. , 2003, Chemical reviews.

[41]  M. D. Fryzuk,et al.  Dinitrogen coordination chemistry: on the biomimetic borderlands. , 2004, Chemical reviews.

[42]  L. Seefeldt,et al.  The interstitial atom of the nitrogenase FeMo-cofactor: ENDOR and ESEEM evidence that it is not a nitrogen. , 2005, Journal of the American Chemical Society.

[43]  L. Seefeldt,et al.  Intermediates Trapped during Nitrogenase Reduction of N⋮N, CH3−NNH, and H2N−NH2 , 2005 .

[44]  P. Müller,et al.  Enantioselective catalytic aziridinations and asymmetric nitrene insertions into CH bonds. , 2003, Chemical reviews.

[45]  Frank Neese,et al.  The geometric and electronic structure of [(cyclam-acetato)Fe(N)]+: a genuine iron(v) species with a ground-state spin S = 1/2. , 2005, Angewandte Chemie.

[46]  K. Wieghardt,et al.  The Molecular and Electronic Structure of Symmetrically and Asymmetrically Coordinated, Non‐Heme Iron Complexes Containing [FeIII(μ‐N)FeIV]4+ (S=3/2) and [FeIV(μ‐N)FeIV]5+ (S=0) Cores , 1999 .

[47]  D. Jenkins,et al.  Oxidative group transfer to Co(I) affords a terminal Co(III) imido complex. , 2002, Journal of the American Chemical Society.

[48]  W. Scheidt,et al.  Molecular Structure of an Fe(IV) Species: {[Fe(TTP)]2N}SbCl6 , 2000 .

[49]  W. A. Nugent,et al.  Metal-Ligand Multiple Bonds: The Chemistry of Transition Metal Complexes Containing Oxo, Nitrido, Imido, Alkylidene, or Alkylidyne Ligands , 1988 .

[50]  D. Wigley Organoimido Complexes of the Transition Metals , 2007 .

[51]  A. Verma,et al.  Reductive Cleavage of the N−N Bond: Synthesis of Imidoiron(III) Cubanes , 1999 .

[52]  J. Ibers,et al.  Structural studies of organonitrogen compounds of the transition elements. III. Crystal and molecular structure of .mu.-methazo-bis(tricarbonyliron) , 1969 .

[53]  D. Coucouvanis,et al.  SYNTHETIC ANALOGS FOR THE MOFE3S3 SUBUNIT OF THE NITROGENASE COFACTOR : STRUCTURAL FEATURES ASSOCIATED WITH THE TOTAL NUMBER OF VALENCE ELECTRONS AND THE POSSIBLE ROLE OF M-M AND MULTIPLE M-S BONDING IN THE FUNCTION OF NITROG ENASE , 1999 .

[54]  K. Suslick,et al.  (μ-Nitrido)bis[(5,10,15,20-tetraphenylporphyrinato)iron](2+), an iron(IV) porphyrin π-radical cation , 1985 .

[55]  B. Burgess,et al.  Mechanism of Molybdenum Nitrogenase. , 1996, Chemical reviews.

[56]  L. Woo Intermetal oxygen, sulfur, selenium, and nitrogen atom transfer reactions , 1993 .

[57]  Steven D. Brown,et al.  A low-spin d5 iron imide: nitrene capture by low-coordinate iron(I) provides the 4-coordinate Fe(III) complex [PhB(CH2PPh2)3]Fe=N-p-tolyl. , 2003, Journal of the American Chemical Society.

[58]  P. Blöchl,et al.  Towards an understanding of the workings of nitrogenase from DFT calculations. , 2005, Chemphyschem : a European journal of chemical physics and physical chemistry.

[59]  Steven D. Brown,et al.  Ground-state singlet L3Fe-(mu-N)-FeL3 and L3Fe(NR) complexes featuring pseudotetrahedral Fe(II) centers. , 2005, Journal of the American Chemical Society.

[60]  M. Abu‐Omar,et al.  Nitrido and imido transition metal complexes of Groups 6–8 , 2003 .

[61]  D. Coucouvanis,et al.  The Chemistry of Synthetic Fe–Mo–S Clusters and their Relevance to the Structure and Function of the Fe–Mo–S Center in Nitrogenase , 2007 .

[62]  L. A. Carpino,et al.  Synthesis, characterization, and thermolysis of 7-amino-7-azabenzonorbornadienes , 1988 .

[63]  L. Seefeldt,et al.  Trapping H- bound to the nitrogenase FeMo-cofactor active site during H2 evolution: characterization by ENDOR spectroscopy. , 2005, Journal of the American Chemical Society.

[64]  G. Ertl Heterogeneous catalysis on the atomic scale , 2001 .

[65]  J. Peters,et al.  Dinitrogen chemistry from trigonally coordinated iron and cobalt platforms. , 2003, Journal of the American Chemical Society.

[66]  R. H. Holm,et al.  The clusters of nitrogenase: synthetic methodology in the construction of weak-field clusters. , 2004, Chemical reviews.