Thermal gradient ring reveals thermosensory changes in diabetic peripheral neuropathy in mice

[1]  M. Tominaga,et al.  Thermal gradient ring reveals different temperature-dependent behaviors in mice lacking thermosensitive TRP channels , 2022, The journal of physiological sciences : JPS.

[2]  T. Kouki,et al.  Macroscopic detection of demyelinated lesions in mouse PNS with neutral red dye , 2021, Scientific Reports.

[3]  M. Tominaga,et al.  Inhibition of transient receptor potential vanilloid 1 and transient receptor potential ankyrin 1 by mosquito and mouse saliva , 2021, Pain.

[4]  M. Mohiuddin,et al.  Deficiency of glucagon gene-derived peptides induces peripheral polyneuropathy in mice. , 2020, Biochemical and biophysical research communications.

[5]  E. Selvin,et al.  Epidemiology of Peripheral Neuropathy and Lower Extremity Disease in Diabetes , 2019, Current Diabetes Reports.

[6]  E. Feldman,et al.  Diabetic neuropathy , 2019, Nature Reviews Disease Primers.

[7]  T. Nakagawa,et al.  TRPA1 sensitization during diabetic vascular impairment contributes to cold hypersensitivity in a mouse model of painful diabetic peripheral neuropathy , 2018, Molecular pain.

[8]  P. McNaughton,et al.  Hyperpolarization-activated cyclic nucleotide–gated 2 (HCN2) ion channels drive pain in mouse models of diabetic neuropathy , 2017, Science Translational Medicine.

[9]  J. Fawcett,et al.  Assessment of Thermal Pain Sensation in Rats and Mice Using the Hargreaves Test. , 2017, Bio-protocol.

[10]  M. Tominaga,et al.  Lysophosphatidic acid‐induced itch is mediated by signalling of LPA5 receptor, phospholipase D and TRPA1/TRPV1 , 2017, The Journal of physiology.

[11]  R. Freeman,et al.  Diabetic Neuropathy: A Position Statement by the American Diabetes Association , 2016, Diabetes Care.

[12]  C. DiMaggio,et al.  A standardized clinical evaluation of phenotypic diversity in diabetic polyneuropathy , 2016, Pain.

[13]  N. Calcutt,et al.  Peripheral Neuropathy in Mouse Models of Diabetes , 2016, Current protocols in mouse biology.

[14]  Jun Ling Liu,et al.  Involvement of hippocampal acetylcholinergic receptors in electroacupuncture analgesia in neuropathic pain rats , 2016, Behavioral and Brain Functions.

[15]  Jonas Larsen,et al.  Comprehensive thermal preference phenotyping in mice using a novel automated circular gradient assay , 2016, Temperature.

[16]  D. Andersson,et al.  Streptozotocin Stimulates the Ion Channel TRPA1 Directly , 2015, The Journal of Biological Chemistry.

[17]  M. Tominaga,et al.  Functional diversity and evolutionary dynamics of thermoTRP channels. , 2015, Cell calcium.

[18]  T. Voets,et al.  TRPM3 in temperature sensing and beyond , 2015, Temperature.

[19]  Yun-qing Li,et al.  Spatio-Temporal Expression and Functional Involvement of Transient Receptor Potential Vanilloid 1 in Diabetic Mechanical Allodynia in Rats , 2014, PloS one.

[20]  F. Gao,et al.  Animal models of diabetic neuropathic pain. , 2014, Experimental and clinical endocrinology & diabetes : official journal, German Society of Endocrinology [and] German Diabetes Association.

[21]  D. Julius,et al.  Structure of the TRPV1 ion channel determined by electron cryo-microscopy , 2013, Nature.

[22]  N. Voitenko,et al.  Specific functioning of Cav3.2 T-type calcium and TRPV1 channels under different types of STZ-diabetic neuropathy. , 2013, Biochimica et biophysica acta.

[23]  B. Nilius,et al.  The transient receptor potential channel TRPA1: from gene to pathophysiology , 2012, Pflügers Archiv - European Journal of Physiology.

[24]  P. Nawroth,et al.  Methylglyoxal Activates Nociceptors through Transient Receptor Potential Channel A1 (TRPA1) , 2012, The Journal of Biological Chemistry.

[25]  Aileen J F King,et al.  The use of animal models in diabetes research , 2012, British journal of pharmacology.

[26]  Paul J Thornalley,et al.  Methylglyoxal modification of Nav1.8 facilitates nociceptive neuron firing and causes hyperalgesia in diabetic neuropathy , 2012, Nature Medicine.

[27]  B. Nilius,et al.  The transient receptor potential channel TRPA 1 : from gene to pathophysiology , 2012 .

[28]  L. Premkumar,et al.  Streptozotocin-Induced Early Thermal Hyperalgesia is independent of Glycemic State of Rats: Role of Transient Receptor Potential Vanilloid 1(TRPV1) and Inflammatory mediators , 2011, Molecular pain.

[29]  I. Obrosova Diabetic painful and insensate neuropathy: Pathogenesis and potential treatments , 2009, Neurotherapeutics.

[30]  M. Tominaga,et al.  TRPV2 Enhances Axon Outgrowth through Its Activation by Membrane Stretch in Developing Sensory and Motor Neurons , 2010, The Journal of Neuroscience.

[31]  R. Latorre Perspectives on TRP Channel Structure and the TRPA1 Puzzle , 2009, The Journal of general physiology.

[32]  D. Corey,et al.  Burning Cold: Involvement of TRPA1 in Noxious Cold Sensation , 2009, The Journal of general physiology.

[33]  N. Calcutt,et al.  Dissociation of thermal hypoalgesia and epidermal denervation in streptozotocin-diabetic mice , 2008, Neuroscience Letters.

[34]  D. Andersson,et al.  Transient Receptor Potential A1 Is a Sensory Receptor for Multiple Products of Oxidative Stress , 2008, The Journal of Neuroscience.

[35]  M. Pauza,et al.  Influence of TRPV1 on diabetes-induced alterations in thermal pain sensitivity , 2008, Molecular pain.

[36]  Soroku Yagihashi,et al.  Pathology and pathogenetic mechanisms of diabetic neuropathy: correlation with clinical signs and symptoms. , 2007, Diabetes research and clinical practice.

[37]  M. Yorek,et al.  Poly(ADP-Ribose) Polymerase Inhibition Alleviates Experimental Diabetic Sensory Neuropathy , 2006, Diabetes.

[38]  David Julius,et al.  TRPA1 Mediates the Inflammatory Actions of Environmental Irritants and Proalgesic Agents , 2006, Cell.

[39]  M. Zhuo,et al.  A new assay of thermal-based avoidance test in freely moving mice. , 2005, The journal of pain : official journal of the American Pain Society.

[40]  M. Nangle,et al.  Inhibitors of Advanced Glycation End Product Formation and Neurovascular Dysfunction in Experimental Diabetes , 2005, Annals of the New York Academy of Sciences.

[41]  J. Wiley,et al.  Early Painful Diabetic Neuropathy Is Associated with Differential Changes in the Expression and Function of Vanilloid Receptor 1* , 2005, Journal of Biological Chemistry.

[42]  N. Calcutt,et al.  Prevention of sensory disorders in diabetic Sprague-Dawley rats by aldose reductase inhibition or treatment with ciliary neurotrophic factor , 2004, Diabetologia.

[43]  M. Cotter,et al.  Effects of the protein kinase C beta inhibitor LY333531 on neural and vascular function in rats with streptozotocin-induced diabetes. , 2003, Clinical science.

[44]  M. Cotter,et al.  Effects of the hydroxyl radical scavenger, dimethylthiourea, on peripheral nerve tissue perfusion, conduction velocity and nociception in experimental diabetes , 2001, Diabetologia.

[45]  K. Sugimoto,et al.  Diabetic neuropathy – a continuing enigma , 2000, Diabetes/metabolism research and reviews.

[46]  A. Hudspeth,et al.  Vanilloid Receptor–Related Osmotically Activated Channel (VR-OAC), a Candidate Vertebrate Osmoreceptor , 2000, Cell.

[47]  S. Bingham,et al.  Vanilloid receptor-1 is essential for inflammatory thermal hyperalgesia , 2000, Nature.

[48]  T. Larson,et al.  Patterns of quantitative sensation testing of hypoesthesia and hyperalgesia are predictive of diabetic polyneuropathy: a study of three cohorts. Nerve growth factor study group. , 2000, Diabetes care.

[49]  N. Hotta,et al.  A protein kinase C-beta-selective inhibitor ameliorates neural dysfunction in streptozotocin-induced diabetic rats. , 1999, Diabetes.

[50]  D. Julius,et al.  A capsaicin-receptor homologue with a high threshold for noxious heat , 1999, Nature.

[51]  D. Julius,et al.  The capsaicin receptor: a heat-activated ion channel in the pain pathway , 1997, Nature.

[52]  H. Tritschler,et al.  The Roles of Oxidative Stress and Antioxidant Treatment in Experimental Diabetic Neuropathy , 1997, Diabetes.

[53]  G. Gebhart,et al.  Nitric oxide mediates the thermal hyperalgesia produced in a model of neuropathic pain in the rat , 1992, Neuroscience.

[54]  R. Dubner,et al.  A new and sensitive method for measuring thermal nociception in cutaneous hyperalgesia , 1987, Pain.

[55]  W. Chick,et al.  Studies of streptozotocin-induced insulitis and diabetes. , 1977, Proceedings of the National Academy of Sciences of the United States of America.

[56]  J. O'Callaghan,et al.  Quantification of the analgesic activity of narcotic antagonists by a modified hot-plate procedure. , 1975, The Journal of pharmacology and experimental therapeutics.

[57]  P. Schein,et al.  Streptozotocin: depression of mouse liver pyridine nucleotides. , 1968, Cancer research.