A Comparative Study and an Evaluation Framework of Multi/Hyperspectral Image Compression

In this paper, we investigate different approaches for multi/hyperspectral image compression. In particular, we compare the classic multi-2D compression approach and two different implementations of 3D approach (full 3D and hybrid) with regards to variations in spatial and spectral dimensions. All approaches are combined with a weighted Principal Component Analysis (PCA) decorrelation stage to optimize performance. For consistent evaluation, we propose a larger comparison framework than the conventionally used PSNR, including eight metrics divided into three families. The results show the weaknesses and strengths of each approach.

[1]  Michael W. Marcellin,et al.  JPEG2000 - image compression fundamentals, standards and practice , 2002, The Kluwer International Series in Engineering and Computer Science.

[2]  Arto Kaarna,et al.  Wavelet Compression of Multispectral Images , 1998 .

[3]  Touradj Ebrahimi,et al.  Christopoulos: Thc Jpeg2000 Still Image Coding System: an Overview the Jpeg2000 Still Image Coding System: an Overview , 2022 .

[4]  J. Hardeberg,et al.  Representation and estimation of spectral reflectances using projection on PCA and wavelet bases , 2008 .

[5]  Allen Gersho,et al.  Feature predictive vector quantization of multispectral images , 1992, IEEE Trans. Geosci. Remote. Sens..

[6]  Arto Kaarna,et al.  Improved back end for integer PCA and wavelet transforms for lossless compression of multispectral images , 2002, Object recognition supported by user interaction for service robots.

[7]  Qian Du,et al.  Hyperspectral Image Compression Using JPEG2000 and Principal Component Analysis , 2007, IEEE Geoscience and Remote Sensing Letters.

[8]  Paul S. Fisher,et al.  Image quality measures and their performance , 1995, IEEE Trans. Commun..

[9]  J. Saghri,et al.  Near-lossless bandwidth compression for radiometric data , 1991 .

[10]  Giovanni Poggi,et al.  Compression of multispectral images by three-dimensional SPIHT algorithm , 2000, IEEE Trans. Geosci. Remote. Sens..

[11]  William A. Pearlman,et al.  A new, fast, and efficient image codec based on set partitioning in hierarchical trees , 1996, IEEE Trans. Circuits Syst. Video Technol..

[12]  Corinne Mailhes,et al.  NEW QUALITY REPRESENTATION FOR HYPERSPECTRAL IMAGES , 2008 .

[13]  Corinne Mailhes,et al.  Quality criteria benchmark for hyperspectral imagery , 2005, IEEE Transactions on Geoscience and Remote Sensing.

[14]  A. Bouridane,et al.  On the Spiht-Based Multispectral Image Compression , 2006, 2006 IEEE International Symposium on Signal Processing and Information Technology.

[15]  Michael W. Marcellin,et al.  Compression of hyperspectral imagery using the 3-D DCT and hybrid DPCM/DCT , 1995, IEEE Trans. Geosci. Remote. Sens..

[16]  Enrico Magli,et al.  Progressive 3-D coding of hyperspectral images based on JPEG 2000 , 2006, IEEE Geoscience and Remote Sensing Letters.

[17]  P. Wintz,et al.  Information Extraction, SNR Improvement, and Data Compression in Multispectral Imagery , 1973, IEEE Trans. Commun..

[18]  Paul S. Fisher,et al.  A Survey of Quality Measures for Gray Scale Image Compression , 1993 .

[19]  A. Bovik,et al.  A universal image quality index , 2002, IEEE Signal Processing Letters.

[20]  John F. Mustard,et al.  Spectral unmixing , 2002, IEEE Signal Process. Mag..