An O(mn2) algorithm for the Maximin problem in E2
暂无分享,去创建一个
[1] Guy Kortsarz,et al. On choosing a dense subgraph , 1993, Proceedings of 1993 IEEE 34th Annual Foundations of Computer Science.
[2] Emanuel Melachrinoudis,et al. LOCATING AN UNDESIRABLE FACILITY WITHIN A GEOGRAPHICAL REGION USING THE MAXIMIN CRITERION , 1985 .
[3] Emanuel Melachrinoudis,et al. A heuristic approach to the single facility maximin location problem , 1985 .
[4] Emanuel Melachrinoudis,et al. Locating an obnoxious facility within a polygonal region , 1986 .
[5] Michael Ian Shamos,et al. Closest-point problems , 1975, 16th Annual Symposium on Foundations of Computer Science (sfcs 1975).
[6] B. Boots,et al. Voronoi (Thiessen) polygons , 1987 .
[7] Atsuyuki Okabe,et al. Spatial Tessellations: Concepts and Applications of Voronoi Diagrams , 1992, Wiley Series in Probability and Mathematical Statistics.
[8] Martine Labbé,et al. The Voronoi Partition of a Network and Its Implications in Location Theory , 1992, INFORMS J. Comput..
[9] S. S. Ravi,et al. Heuristic and Special Case Algorithms for Dispersion Problems , 1994, Oper. Res..
[10] Franz Aurenhammer,et al. Voronoi diagrams—a survey of a fundamental geometric data structure , 1991, CSUR.
[11] Guy Kortsarz,et al. On Choosing a Dense Subgraph (Extended Abstract) , 1993, FOCS 1993.
[12] Franz Aurenhammer,et al. An optimal algorithm for constructing the weighted voronoi diagram in the plane , 1984, Pattern Recognit..