Distributed scanning volumetric SDOCT for motion corrected corneal biometry

We present a method, termed distributed scanning OCT (DSOCT), which reduces the effects of patient motion on corneal biometry utilizing current-generation clinically available spectral domain optical coherence tomography (SDOCT) systems. We first performed a pilot study of the power spectrum of normal patient axial eye motion based on repeated (M-mode) SDOCT. Using DSOCT to reduce the effects of patient motion, we conducted a preliminary patient study comparing the measured anterior and posterior corneal curvatures and the calculated corneal power to both corneal topography and Scheimpflug photography in normal subjects. The repeatability for the measured radius of curvature of both anterior and posterior surfaces as well as calculated corneal refractive power using DSOCT was comparable to those of both topography and Scheimpflug photography.

[1]  Rob G L van der Heijde,et al.  Spherical aberration of the anterior and posterior surfaces of the human cornea. , 2006, Journal of the Optical Society of America. A, Optics, image science, and vision.

[2]  C. Leung,et al.  Visualization of anterior chamber angle dynamics using optical coherence tomography. , 2005, Ophthalmology.

[3]  S H Yun,et al.  Motion artifacts in optical coherence tomography with frequency-domain ranging. , 2004, Optics express.

[4]  B. Seitz,et al.  Underestimation of intraocular lens power for cataract surgery after myopic photorefractive keratectomy. , 1999, Ophthalmology.

[5]  J. Holladay,et al.  Corneal power measurements using scheimpflug imaging in eyes with prior corneal refractive surgery. , 2009, Journal of refractive surgery.

[6]  James T Schwiegerling,et al.  Field guide to visual and ophthalmic optics , 2004 .

[7]  C K Hitzenberger,et al.  Investigation of dispersion effects in ocular media by multiple wavelength partial coherence interferometry. , 1998, Experimental eye research.

[8]  Iwona Gorczynska,et al.  Anterior segment imaging with Spectral OCT system using a high-speed CMOS camera. , 2009, Optics express.

[9]  A. Fercher,et al.  Performance of fourier domain vs. time domain optical coherence tomography. , 2003, Optics express.

[10]  J. Fujimoto,et al.  In vivo retinal imaging by optical coherence tomography. , 1993, Optics letters.

[11]  David Huang,et al.  Intraocular lens power calculation after previous myopic laser vision correction based on corneal power measured by Fourier‐domain optical coherence tomography , 2012, Journal of cataract and refractive surgery.

[12]  R. Tsai,et al.  Validity of the keratometric index: Evaluation by the Pentacam rotating Scheimpflug camera , 2008, Journal of cataract and refractive surgery.

[13]  J. Izatt,et al.  Group index of the human cornea at 1.3-microm wavelength obtained in vitro by optical coherence domain reflectometry. , 2004, Optics letters.

[14]  Yan Li,et al.  Corneal power measurement with Fourier‐domain optical coherence tomography , 2010, Journal of cataract and refractive surgery.

[15]  J. Izatt,et al.  Correction of geometric and refractive image distortions in optical coherence tomography applying Fermat's principle. , 2002, Optics express.

[16]  Daniel Malacara,et al.  Handbook of optical design , 1994 .

[17]  B. L. Anderson,et al.  Total corneal power estimation: ray tracing method versus gaussian optics formula. , 2011, Investigative ophthalmology & visual science.

[18]  S. Farsiu,et al.  Constrained, globally optimal, multi-frame motion estimation , 2005, IEEE/SP 13th Workshop on Statistical Signal Processing, 2005.

[19]  T. Olsen On the calculation of power from curvature of the cornea. , 1986, The British journal of ophthalmology.

[20]  Maciej Wojtkowski,et al.  In vivo corneal high-speed, ultra high-resolution optical coherence tomography. , 2007, Archives of ophthalmology.

[21]  M. Wojtkowski,et al.  Ultra high-speed swept source OCT imaging of the anterior segment of human eye at 200 kHz with adjustable imaging range. , 2009, Optics express.

[22]  Marinko V Sarunic,et al.  Imaging the ocular anterior segment with real-time, full-range Fourier-domain optical coherence tomography. , 2008, Archives of ophthalmology.

[23]  R. W. Ditchburn,et al.  Involuntary eye movements during fixation , 1953, The Journal of physiology.

[24]  M. Wojtkowski,et al.  Corneal topography with high-speed swept source OCT in clinical examination , 2011, Biomedical optics express.

[25]  Changhuei Yang,et al.  Sensitivity advantage of swept source and Fourier domain optical coherence tomography. , 2003, Optics express.

[26]  Joseph A. Izatt,et al.  Automatic segmentation of seven retinal layers in SDOCT images congruent with expert manual segmentation , 2010, Optics express.

[27]  Joseph A. Izatt,et al.  Corneal biometry from volumetric SDOCT and comparison with existing clinical modalities , 2012, Biomedical optics express.

[28]  Kostadinka Bizheva,et al.  In vivo volumetric imaging of the human corneo-scleral limbus with spectral domain OCT , 2011, Biomedical optics express.

[29]  Joseph A. Izatt,et al.  Robust automatic segmentation of corneal layer boundaries in SDOCT images using graph theory and dynamic programming , 2011, Biomedical optics express.

[30]  J. Izatt,et al.  3D refraction correction and extraction of clinical parameters from spectral domain optical coherence tomography of the cornea. , 2010, Optics express.

[31]  R. Spaide,et al.  Enhanced depth imaging spectral-domain optical coherence tomography. , 2008, American journal of ophthalmology.

[32]  B. Bouma,et al.  Improved signal-to-noise ratio in spectral-domain compared with time-domain optical coherence tomography. , 2003, Optics letters.

[33]  S. Marcos,et al.  Corneal topography from spectral optical coherence tomography (sOCT) , 2011, Biomedical optics express.

[34]  S. Marcos,et al.  Optical distortion correction in optical coherence tomography for quantitative ocular anterior segment by three-dimensional imaging. , 2010, Optics express.

[35]  Xoana G. Troncoso,et al.  Saccades and microsaccades during visual fixation, exploration, and search: foundations for a common saccadic generator. , 2008, Journal of vision.

[36]  S. Norrby Unfortunate Discrepancies , 1998, Journal of cataract and refractive surgery.

[37]  David A. Atchison,et al.  Optics of the Human Eye , 2023 .

[38]  E A Swanson,et al.  Micrometer-scale resolution imaging of the anterior eye in vivo with optical coherence tomography. , 1994, Archives of ophthalmology.

[39]  L. Riggs,et al.  Involuntary motions of the eye during monocular fixation. , 1950, Journal of experimental psychology.

[40]  David Huang,et al.  Measuring total corneal power before and after laser in situ keratomileusis with high‐speed optical coherence tomography , 2006, Journal of cataract and refractive surgery.