Foregrounds and CMB experiments: I. Semi-analytical estimates of contamination

Abstract As Cosmic Microwave Background (CMB) measurements are becoming more ambitious, the issue of foreground contamination is becoming more pressing. This is especially true at the level of sensitivity, angular resolution and for the sky coverage of the planned space experiments ( MAP, 1998 ) and ( Planck, 1999 ). We present in this paper an indicator of the accuracy of the separation of the CMB anisotropies from those induced by foregrounds. Of course, the outcome will depend on the spectral and spatial characteristics of the sources of anisotropies. We thus start by summarising the present knowledge on the spectral and spatial properties of Galactic foregrounds, point sources, and clusters of galaxies. This information comes in support of a modelling of the microwave sky including the relevant components. The accuracy indicator we introduce is based on a generalisation of the Wiener filtering method to multi-frequency, multi-resolution data. While the development and use of this indicator was prompted by the preparation of the scientific case for the ( Planck, 1999 ) satellite, it has broader application since it allows assessing the effective capabilities of an instrumental set-up once foregrounds are fully accounted for, with a view to enabling comparisons between different experimental arrangements. The real sky might well be different from the one assumed here, and the analysis method might not be in the end Wiener filtering, but this work still allow meaningful comparative studies. As a matter of examples, we compare the CMB reconstruction errors for the ( MAP, 1998 ) and ( Planck, 1999 ) space missions, as well as the robustness of the ( Planck, 1999 ) outcome to possible failures of specific spectral channels or global variations of the detectors noise level across spectral channels.

[1]  R. B. Barreiro,et al.  The effect of point sources on satellite observations of the cosmic microwave background , 1998, astro-ph/9810241.

[2]  10-GHz Tenerife cosmic microwave background observations at 8° resolution and their analysis using a new maximum entropy method , 1998 .

[3]  R. Laureijs,et al.  IRAS DETECTION OF VERY COLD DUST IN THE LYNDS-134 CLOUD COMPLEX , 1991 .

[4]  N. Aghanim,et al.  Planning Future Space Measurements of the CMB , 1996 .

[5]  D. Valls-Gabaud Cosmological Applications of Hα Surveys , 1998, Publications of the Astronomical Society of Australia.

[6]  Edward J. Wollack,et al.  Galactic Microwave Emission at Degree Angular Scales , 1997, astro-ph/9702172.

[7]  W. B. Burton,et al.  The dust/gas correlation at high Galactic latitude , 1996 .

[8]  I. Smail,et al.  A Deep Submillimeter Survey of Lensing Clusters: A New Window on Galaxy Formation and Evolution , 1997, astro-ph/9708135.

[9]  Max Tegmark Removing Real-World Foregrounds from Cosmic Microwave Background Maps , 1998 .

[10]  J. R. Bond,et al.  Cosmic confusion: degeneracies among cosmological parameters derived from measurements of microwave background anisotropies , 1998 .

[11]  O. Lahav,et al.  Wiener Reconstruction of The Large Scale Structure , 1994, astro-ph/9410080.

[12]  M. Zaldarriaga,et al.  Microwave Background Constraints on Cosmological Parameters , 1997, astro-ph/9702157.

[13]  D. Spergel,et al.  Hot gas in superclusters and microwave background distortions , 1995 .

[14]  Charles L. Bennett,et al.  Preliminary spectral observations of the Galaxy with a 7 deg beam by the Cosmic Background Explorer (COBE) , 1991 .

[15]  D. J. Fixsen,et al.  Far-Infrared Spectral Observations of the Galaxy by COBE , 1995 .

[16]  AN ANOMALOUS COMPONENT OF GALACTIC EMISSION , 1997, astro-ph/9705241.

[17]  R. J. Reynolds The column density and scale height of free electrons in the galactic disk , 1989 .

[18]  J. Delabrouille,et al.  Analysis of the accuracy of a destriping method for future cosmic microwave background mapping with the PLANCK SURVEYOR satellite , 1998 .

[19]  M. Janssen,et al.  Mapping the Sky with the COBE Differential Microwave Radiometers , 1992 .

[20]  Max Tegmark How to Make Maps from Cosmic Microwave Background Data without Losing Information , 1996, astro-ph/9611130.

[21]  Simon Prunet,et al.  Multifrequency Wiener filtering of cosmic microwave background data with polarization , 1999 .

[22]  Gravitational Lensing Effect on Cosmic Microwave Background Anisotropies: A Power Spectrum Approach , 1995, astro-ph/9505109.

[23]  P. Bernardis,et al.  CMB and Galactic Maps in the Millimetric Region , 1992 .

[24]  A. Lazarian,et al.  Diffuse Galactic Emission from Spinning Dust Grains , 1997, astro-ph/9710152.

[25]  Edward L. Wright Angular Power Spectra of the COBE DIRBE Maps , 1998 .

[26]  R. Davies,et al.  Galactic synchrotron emission at high frequencies , 1996 .

[27]  Keith A. Arnaud,et al.  A measurement of the mass fluctuation spectrum from the cluster X-ray temperature function , 1991 .

[28]  W. B. Burton,et al.  TENTATIVE DETECTION OF A COSMIC FAR-INFRARED BACKGROUND WITH COBE , 1996 .

[29]  The optically dark side of galaxy formation , 1997, Nature.

[30]  K. Lawson,et al.  Variations in the spectral index of the galactic radio continuum emission in the northern hemisphere , 1987 .

[31]  T. N. Gautier,et al.  A calculation of confusion noise due to infrared cirrus , 1992 .

[32]  A. Jaffe,et al.  Calculation of the Ostriker-Vishniac effect in cold dark matter models , 1998, astro-ph/9801022.

[33]  William H. Press,et al.  Formation of Galaxies and Clusters of Galaxies by Self-Similar Gravitational Condensation , 1974 .

[34]  D. Elbaz,et al.  Observations of the Hubble Deep Field with the Infrared Space Observatory - III. Source counts and P(D) analysis , 1997 .

[35]  A. Lasenby,et al.  Studies of cosmic microwave background structure at Dec. = + 40° −1. The performance of the Tenerife experiments , 1996 .

[36]  Krzysztof M. Gorski On determining the spectrum of primordial inhomogeneity from the COBE DMR sky maps: Method , 1994 .

[37]  Jeremiah P. Ostriker,et al.  Generation of microwave background fluctuations from nonlinear perturbations at the era of galaxy formation , 1986 .

[38]  A. Kembhavi,et al.  Starbursts: Triggers, Nature, and Evolution , 1998 .

[39]  A. Lasenby,et al.  Direct observation of structure in the cosmic microwave background , 1994, Nature.

[40]  N. Odegard,et al.  Detection and Characterization of Cold Interstellar Dust and Polycyclic Aromatic Hydrocarbon Emission, from COBE Observations , 1996, astro-ph/9610198.

[41]  Edward L. Wright Scanning and Mapping Strategies for CMB Experiments , 1996 .

[42]  Saleem Zaroubi,et al.  Wiener filtering of the COBE Differential Microwave Radiometer data , 1994 .

[43]  A High-Resolution Map of the Cosmic Microwave Background around the North Celestial Pole , 1996, astro-ph/9608018.

[44]  J. Ostriker,et al.  A theory of the interstellar medium - Three components regulated by supernova explosions in an inhomogeneous substrate , 1977 .

[45]  C. G. T. Haslam,et al.  A 408 MHz all-sky continuum survey. II. The atlas of contour maps. , 1982 .

[46]  The cluster abundance in flat and open cosmologies , 1995, astro-ph/9511007.

[47]  Forecasting cosmic parameter errors from microwave background anisotropy experiments , 1997, astro-ph/9702100.

[48]  P. Richards,et al.  Measurements of the millimeter-wave spectrum of interstellar dust emission , 1995 .

[49]  K. Gorski,et al.  Cosmic temperature fluctuations from two years of COBE differential microwave radiometers observations , 1994 .

[50]  Ionization by early quasars and Cosmic Microwave Background anisotropies. (Erratum) , 1996, astro-ph/9604083.

[51]  Carlos S. Frenk,et al.  Galaxy formation through hierarchical clustering , 1991 .

[52]  L. Knox,et al.  Determination of inflationary observables by cosmic microwave background anisotropy experiments. , 1995, Physical review. D, Particles and fields.

[53]  R. C. Bohlin,et al.  A survey of interstellar molecular hydrogen. I , 1977 .

[54]  Jean-Paul Kneib,et al.  Deep Counts of Submillimeter Galaxies , 1998, astro-ph/9812412.

[55]  D. Schlegel,et al.  Maps of Dust Infrared Emission for Use in Estimation of Reddening and Cosmic Microwave Background Radiation Foregrounds , 1998 .

[56]  E. Hivon,et al.  Semi‐analytic modelling of galaxy evolution in the IR/submm range , 1997, astro-ph/9710340.

[57]  M. Rees,et al.  Large-scale Density Inhomogeneities in the Universe , 1968, Nature.

[58]  L. Toffolatti,et al.  Extragalactic source counts and contributions to the anisotropies of the cosmic microwave background: predictions for the Planck Surveyor mission , 1998 .

[59]  C. Bennett,et al.  The Spectrum of the Extragalactic Far-Infrared Background from the COBE FIRAS Observations , 1998, astro-ph/9803021.

[60]  P. Reich,et al.  A map of spectral indices of the Galactic radio continuum emission between 408 MHz and 1420 MHz for the entire northern sky , 1988 .

[61]  N. Aghanim,et al.  Cosmology with Sunyaev-Zeldovich observations from space. , 1997 .

[62]  Y. Zeldovich,et al.  The interaction of matter and radiation in a hot-model universe , 1969 .

[63]  E. L. Wright,et al.  The COBE Diffuse Infrared Background Experiment Search for the Cosmic Infrared Background. I. Limits and Detections , 1998, astro-ph/9806167.

[64]  D. Schlegel,et al.  Maps of Dust IR Emission for Use in Estimation of Reddening and CMBR Foregrounds , 1997, astro-ph/9710327.

[65]  A. Abergel,et al.  Comparative analysis of the far-infrared and (13)CO (J = 0-1) emissions of the Taurus complex , 1994 .

[66]  Max Tegmark,et al.  A method for subtracting foregrounds from multifrequency CMB sky maps , 1996 .

[67]  W. B. Burton,et al.  The leiden/dwingeloo survey of emission from galactic HI , 1994 .

[68]  R. Bond,et al.  Signal-to-noise eigenmode analysis of the two-year COBE maps. , 1994, Physical review letters.

[69]  C. Lonsdale,et al.  Galaxy evolution and large-scale structure in the far-infrared. II, The IRAS Faint Source Survey , 1990 .