On Projective and Separable Properties

A language L over the Cartesian product of component alphabets is called projective if it is closed under projections. That is, together with each word α e L, it contains all the words that have the same projections up to stuttering as α. We prove that in each of the behavior classes: ω-regular, regular and star-free ω-regular (i.e., definable by linear temporal logic) languages, the projective languages are precisely the Boolean combinations of stuttering-closed component languages from the corresponding class. Languages of these behavior classes can also be seen as properties of various temporal logics; some uses of projective properties for specification and verification of programs are studied.

[1]  Antoni W. Mazurkiewicz,et al.  Trace Theory , 1986, Advances in Petri Nets.

[2]  Yehuda Afek,et al.  Lazy caching , 1993, TOPL.

[3]  Pierre Wolper Temporal Logic Can Be More Expressive , 1983, Inf. Control..

[4]  Dominique Perrin,et al.  Recent Results on Automata and Infinite Words , 1984, MFCS.

[5]  Amir Pnueli,et al.  Specifying and proving serializability in temporal logic , 1991, [1991] Proceedings Sixth Annual IEEE Symposium on Logic in Computer Science.

[6]  Jeffrey D. Ullman,et al.  Introduction to Automata Theory, Languages and Computation , 1979 .

[7]  Gerard J. Holzmann,et al.  An improvement in formal verification , 1994, FORTE.

[8]  A. Nerode,et al.  Linear automaton transformations , 1958 .

[9]  Christos H. Papadimitriou,et al.  The Theory of Database Concurrency Control , 1986 .

[10]  Pierre Wolper,et al.  A Partial Approach to Model Checking , 1994, Inf. Comput..

[11]  Doron A. Peled,et al.  Interleaving Set Temporal Logic , 1990, Theor. Comput. Sci..

[12]  Neil D. Jones,et al.  Complexity of Some Problems in Petri Nets , 1977, Theor. Comput. Sci..

[13]  Doron A. Peled,et al.  All from One, One for All: on Model Checking Using Representatives , 1993, CAV.

[14]  André Arnold,et al.  A Syntactic Congruence for Rational omega-Language , 1985, Theor. Comput. Sci..

[15]  J. Van Leeuwen,et al.  Handbook of theoretical computer science - Part A: Algorithms and complexity; Part B: Formal models and semantics , 1990 .

[16]  Doron A. Peled Combining Partial Order Reductions with On-the-fly Model-Checking , 1994, CAV.

[17]  Wolfgang Thomas,et al.  Automata on Infinite Objects , 1991, Handbook of Theoretical Computer Science, Volume B: Formal Models and Sematics.

[18]  Marilyn Bohl,et al.  Information processing , 1971 .

[19]  Robin Milner,et al.  On Observing Nondeterminism and Concurrency , 1980, ICALP.

[20]  Saharon Shelah,et al.  On the temporal analysis of fairness , 1980, POPL '80.

[21]  Pierre Wolper,et al.  An Algorithmic Approach for Checking Closure Properties of omega-Regular Languages , 1996, CONCUR.

[22]  Samuel Eilenberg,et al.  Automata, languages, and machines. A , 1974, Pure and applied mathematics.

[23]  Antti Valmari,et al.  Stubborn sets for reduced state space generation , 1991, Applications and Theory of Petri Nets.

[24]  R. McNaughton,et al.  Counter-Free Automata , 1971 .

[25]  Leslie Lamport,et al.  What Good is Temporal Logic? , 1983, IFIP Congress.

[26]  Amir Pnueli,et al.  Checking that finite state concurrent programs satisfy their linear specification , 1985, POPL.

[27]  Volker Diekert,et al.  Combinatorics on Traces , 1990, Lecture Notes in Computer Science.

[28]  Gerard J. Holzmann,et al.  Design and validation of computer protocols , 1991 .

[29]  Doron A. Peled,et al.  Stutter-Invariant Temporal Properties are Expressible Without the Next-Time Operator , 1997, Inf. Process. Lett..