A general technoeconomic and environmental procedure for assessment of small-scale cogeneration scheme installations: Application to a local industry operating in Thrace, Greece, using microturbines

Abstract The present paper describes a proposed general systematic procedure for small-scale combined heat and power (CHP) exploitation (where “small-scale CHP” refers to CHP installations with electric capacities up to 1 MW). The mentioned systematic procedure is implemented through a developed computer code and may be applied to any such small-scale project in order to assess its suitability based on technoeconomic and environmental considerations. A dynamic database based on small-scale CHP units (available in the world market) and their pertinent technical, economical and environmental features is created and, in conjunction with the developed program, is used for determination of a suitable CHP unit (or system) size and the selection of the associated proper prime mover type for any project of interest. Using well-known economic criteria, the economic analysis is performed, including the sensitivity analysis of the considered project based on the main key system parameters. In terms of the socioeconomic analysis, a carbon tax (CT) scenario is considered, and its effect on the economic behavior of the project is investigated. Last, with respect to environmental considerations, the program calculates, for any such project, the avoided main pollutants and the fuel savings when a CHP system is applied. As a case study, a small textile industry operating in the Eastern Macedonia-Thrace Region of Greece is considered, and its associated (electrical and thermal) data are used as input data to the proposed computer program. In this application, two microturbine units are selected and thoroughly evaluated, and the pertinent simulation results are presented and discussed accordingly.