Properties and microstructure of alkali-activated red clay brick waste
暂无分享,去创建一个
Jordi Payá | María Victoria Borrachero | Mauro Mitsuuchi Tashima | L. Reig | Christopher R. Cheeseman | C. Cheeseman | J. Monzó | J. Payá | L. Reig | José Monzó | M. Borrachero | M. Tashima
[1] Kenneth C. Hover,et al. Mercury porosimetry of hardened cement pastes , 1999 .
[2] John L. Provis,et al. Dilatometry of geopolymers as a means of selecting desirable fly ash sources , 2012 .
[3] P. Devadas Manoharan,et al. Concrete with ceramic waste aggregate , 2005 .
[4] J. Provis,et al. In situ ATR-FTIR study of the early stages of fly ash geopolymer gel formation. , 2007, Langmuir : the ACS journal of surfaces and colloids.
[5] L. Soriano,et al. A new geopolymeric binder from hydrated-carbonated cement , 2012 .
[6] M. Garg,et al. Cementitious binder from fly ash and other industrial wastes , 1999 .
[7] V. Rose,et al. Effect of silicate modulus and metakaolin incorporation on the carbonation of alkali silicate-activated slags , 2010 .
[8] Kostas Komnitsas,et al. Geopolymerisation: A review and prospects for the minerals industry , 2007 .
[9] J. Stakebake. Characterization of natural chabazite and 5A synthetic zeolites: Part I. Thermal and outgassing properties , 1984 .
[10] Á. G. Torre,et al. Quantitative determination of phases in the alkali activation of fly ash. Part I. Potential ash reactivity , 2006 .
[11] C. Cheeseman,et al. Geopolymerisation of silt generated from construction and demolition waste washing plants. , 2009, Waste management.
[12] L. Soriano,et al. New geopolymeric binder based on fluid catalytic cracking catalyst residue (FCC) , 2012 .
[13] Fernando Pacheco-Torgal,et al. Reusing ceramic wastes in concrete , 2010 .
[14] João Castro-Gomes,et al. The potential pozzolanic activity of glass and red-clay ceramic waste as cement mortars components , 2012 .
[15] John L. Provis,et al. Engineering and durability properties of concretes based on alkali-activated granulated blast furnac , 2012 .
[16] J. Deventer,et al. Geopolymer technology: the current state of the art , 2007 .
[17] David A Lange,et al. Image-based characterization of cement pore structure using wood’s metal intrusion , 1998 .
[18] Fernando Pacheco-Torgal,et al. Alkali-activated binders: A review. Part 2. About materials and binders manufacture , 2008 .
[19] Kostas Komnitsas,et al. Geopolymerisation of low calcium ferronickel slags , 2007 .
[20] L. Soriano,et al. Alkaline Activation of Ceramic Waste Materials , 2013 .
[21] Ángel Palomo,et al. Alkali activation of fly ash: Effect of the SiO2/Na2O ratio Part I: FTIR study , 2007 .
[22] Francisca Puertas,et al. Residuos cerámicos para su posible uso como materia prima en la fabricación de clínker de cemento Portland : Caracterización y activación alcalina , 2006 .
[23] Hua Xu,et al. Effect of Curing Temperature and Silicate Concentration on Fly-Ash-Based Geopolymerization , 2006 .
[24] Moisés Frías,et al. Caracterización de los hormigones realizados con áridos reciclados procedentes de la industria de cerámica sanitaria , 2011 .
[25] M. F. Gazulla,et al. Ceramic wastes as alternative raw materials for Portland cement clinker production , 2008 .
[26] Ángel Palomo,et al. Alkali-activated fly ashes: A cement for the future , 1999 .
[27] M. Stemmer,et al. An alternative method to measure carbonate in soils by FT-IR spectroscopy , 2007 .
[28] F. Puertas,et al. Mineralogical and microstructural characterisation of alkali-activated fly ash/slag pastes , 2003 .
[29] D Amutha Rani,et al. Production of geopolymers using glass produced from DC plasma treatment of air pollution control (APC) residues. , 2010, Journal of hazardous materials.
[30] John L. Provis,et al. Spatial distribution of pores in fly ash-based inorganic polymer gels visualised by Wood’s metal intrusion , 2009 .
[31] J. Provis,et al. Attenuated total reflectance fourier transform infrared analysis of fly ash geopolymer gel aging. , 2007, Langmuir : the ACS journal of surfaces and colloids.
[32] Zuhua Zhang,et al. Geopolymerization process of alkali-metakaolinite characterized by isothermal calorimetry , 2009 .
[33] Zhang Yunsheng,et al. Synthesis and heavy metal immobilization behaviors of slag based geopolymer. , 2007, Journal of hazardous materials.
[34] John L. Provis,et al. Microscopy and microanalysis of inorganic polymer cements. 2: the gel binder , 2009, Journal of Materials Science.
[35] Fernando Pacheco-Torgal,et al. Alkali-activated binders: A review: Part 1. Historical background, terminology, reaction mechanisms and hydration products , 2008 .
[36] Ailar Hajimohammadi,et al. Time-resolved and spatially-resolved infrared spectroscopic observation of seeded nucleation controlling geopolymer gel formation. , 2011, Journal of colloid and interface science.
[37] A. Lavat,et al. Characterization of ceramic roof tile wastes as pozzolanic admixture. , 2009, Waste management.
[38] Luigia Binda,et al. Study of the pozzolanicity of some bricks and clays , 1997 .
[39] M. F. Gazulla,et al. Clinkers and cements obtained from raw mix containing ceramic waste as a raw material. Characterization, hydration and leaching studies , 2010 .
[40] H. Knözinger,et al. Influence of phosphonation and phosphation on surface acid-base and morphological properties of CaO as investigated by in situ FTIR spectroscopy and electron microscopy. , 2006, Journal of colloid and interface science.