Properties and microstructure of alkali-activated red clay brick waste

Abstract Sintered red clay ceramic is used to produce hollow bricks which are manufactured in enormous quantities in Spain. They also constitute a major fraction of construction and demolition waste. The aim of this research was to investigate the properties and microstructure of alkali-activated cement pastes and mortars produced using red clay brick waste. The work shows that the type and concentration of alkali activator can be optimised to produce mortar samples with compressive strengths up to 50 MPa after curing for 7 days at 65 °C. This demonstrates a new potential added value reuse application for this important waste material.

[1]  Kenneth C. Hover,et al.  Mercury porosimetry of hardened cement pastes , 1999 .

[2]  John L. Provis,et al.  Dilatometry of geopolymers as a means of selecting desirable fly ash sources , 2012 .

[3]  P. Devadas Manoharan,et al.  Concrete with ceramic waste aggregate , 2005 .

[4]  J. Provis,et al.  In situ ATR-FTIR study of the early stages of fly ash geopolymer gel formation. , 2007, Langmuir : the ACS journal of surfaces and colloids.

[5]  L. Soriano,et al.  A new geopolymeric binder from hydrated-carbonated cement , 2012 .

[6]  M. Garg,et al.  Cementitious binder from fly ash and other industrial wastes , 1999 .

[7]  V. Rose,et al.  Effect of silicate modulus and metakaolin incorporation on the carbonation of alkali silicate-activated slags , 2010 .

[8]  Kostas Komnitsas,et al.  Geopolymerisation: A review and prospects for the minerals industry , 2007 .

[9]  J. Stakebake Characterization of natural chabazite and 5A synthetic zeolites: Part I. Thermal and outgassing properties , 1984 .

[10]  Á. G. Torre,et al.  Quantitative determination of phases in the alkali activation of fly ash. Part I. Potential ash reactivity , 2006 .

[11]  C. Cheeseman,et al.  Geopolymerisation of silt generated from construction and demolition waste washing plants. , 2009, Waste management.

[12]  L. Soriano,et al.  New geopolymeric binder based on fluid catalytic cracking catalyst residue (FCC) , 2012 .

[13]  Fernando Pacheco-Torgal,et al.  Reusing ceramic wastes in concrete , 2010 .

[14]  João Castro-Gomes,et al.  The potential pozzolanic activity of glass and red-clay ceramic waste as cement mortars components , 2012 .

[15]  John L. Provis,et al.  Engineering and durability properties of concretes based on alkali-activated granulated blast furnac , 2012 .

[16]  J. Deventer,et al.  Geopolymer technology: the current state of the art , 2007 .

[17]  David A Lange,et al.  Image-based characterization of cement pore structure using wood’s metal intrusion , 1998 .

[18]  Fernando Pacheco-Torgal,et al.  Alkali-activated binders: A review. Part 2. About materials and binders manufacture , 2008 .

[19]  Kostas Komnitsas,et al.  Geopolymerisation of low calcium ferronickel slags , 2007 .

[20]  L. Soriano,et al.  Alkaline Activation of Ceramic Waste Materials , 2013 .

[21]  Ángel Palomo,et al.  Alkali activation of fly ash: Effect of the SiO2/Na2O ratio Part I: FTIR study , 2007 .

[22]  Francisca Puertas,et al.  Residuos cerámicos para su posible uso como materia prima en la fabricación de clínker de cemento Portland : Caracterización y activación alcalina , 2006 .

[23]  Hua Xu,et al.  Effect of Curing Temperature and Silicate Concentration on Fly-Ash-Based Geopolymerization , 2006 .

[24]  Moisés Frías,et al.  Caracterización de los hormigones realizados con áridos reciclados procedentes de la industria de cerámica sanitaria , 2011 .

[25]  M. F. Gazulla,et al.  Ceramic wastes as alternative raw materials for Portland cement clinker production , 2008 .

[26]  Ángel Palomo,et al.  Alkali-activated fly ashes: A cement for the future , 1999 .

[27]  M. Stemmer,et al.  An alternative method to measure carbonate in soils by FT-IR spectroscopy , 2007 .

[28]  F. Puertas,et al.  Mineralogical and microstructural characterisation of alkali-activated fly ash/slag pastes , 2003 .

[29]  D Amutha Rani,et al.  Production of geopolymers using glass produced from DC plasma treatment of air pollution control (APC) residues. , 2010, Journal of hazardous materials.

[30]  John L. Provis,et al.  Spatial distribution of pores in fly ash-based inorganic polymer gels visualised by Wood’s metal intrusion , 2009 .

[31]  J. Provis,et al.  Attenuated total reflectance fourier transform infrared analysis of fly ash geopolymer gel aging. , 2007, Langmuir : the ACS journal of surfaces and colloids.

[32]  Zuhua Zhang,et al.  Geopolymerization process of alkali-metakaolinite characterized by isothermal calorimetry , 2009 .

[33]  Zhang Yunsheng,et al.  Synthesis and heavy metal immobilization behaviors of slag based geopolymer. , 2007, Journal of hazardous materials.

[34]  John L. Provis,et al.  Microscopy and microanalysis of inorganic polymer cements. 2: the gel binder , 2009, Journal of Materials Science.

[35]  Fernando Pacheco-Torgal,et al.  Alkali-activated binders: A review: Part 1. Historical background, terminology, reaction mechanisms and hydration products , 2008 .

[36]  Ailar Hajimohammadi,et al.  Time-resolved and spatially-resolved infrared spectroscopic observation of seeded nucleation controlling geopolymer gel formation. , 2011, Journal of colloid and interface science.

[37]  A. Lavat,et al.  Characterization of ceramic roof tile wastes as pozzolanic admixture. , 2009, Waste management.

[38]  Luigia Binda,et al.  Study of the pozzolanicity of some bricks and clays , 1997 .

[39]  M. F. Gazulla,et al.  Clinkers and cements obtained from raw mix containing ceramic waste as a raw material. Characterization, hydration and leaching studies , 2010 .

[40]  H. Knözinger,et al.  Influence of phosphonation and phosphation on surface acid-base and morphological properties of CaO as investigated by in situ FTIR spectroscopy and electron microscopy. , 2006, Journal of colloid and interface science.