Polarization sensitive photodetector based on quasi-1D ZrSe3

The in-plane anisotropy of transition metal trichalcogenides (MX3) has a significant impact on the molding of materials and MX3 is a perfect choice for polarized photodetectors. In this study, the crystal structure, optical and optoelectronic anisotropy of one kind of quasi-one-dimensional (1D) semiconductors, ZrSe3, are systematically investigated through experiments and theoretical studies. The ZrSe3-based photodetector shows impressive wide spectral response from ultraviolet (UV) to near infrared (NIR) and exhibits great optoelectrical properties with photoresponsivity of 11.9 mA·W-1 and detectivity of ~106 at 532 nm. Moreover, the dichroic ratio of ZrSe3-based polarized photodetector is around 1.1 at 808 nm. This study suggests that ZrSe3 has potential in optoelectronic applications and polarization detectors.

[1]  Bo Li,et al.  Synthesis of Ultrathin 2D Nonlayered α‐MnSe Nanosheets, MnSe/WS2 Heterojunction for High‐Performance Photodetectors , 2021, Small Structures.

[2]  Wei Chen,et al.  Two‐dimensional magnetic transition metal chalcogenides , 2021, SmartMat.

[3]  Honggang Gu,et al.  Birefringence and Dichroism in Quasi-1D Transition Metal Trichalcogenides: Direct Experimental Investigation. , 2021, Small.

[4]  Yushen Liu,et al.  Van der Waals heterojunction ReSe2/WSe2 polarization-resolved photodetector , 2021 .

[5]  K. Loh,et al.  Intrinsic polarization coupling in 2D α‐In2Se3 toward artificial synapse with multimode operations , 2021, SmartMat.

[6]  Kaiyou Wang,et al.  Direct Polarimetric Image Sensor and Wide Spectral Response Based on Quasi‐1D Sb2S3 Nanowire , 2020, Advanced Functional Materials.

[7]  Caofeng Pan,et al.  Recent Progress in Optoelectronic Synapses for Artificial Visual‐Perception System , 2020, Small Structures.

[8]  C. Rout,et al.  Anisotropic quasi-one-dimensional layered transition-metal trichalcogenides: synthesis, properties and applications , 2020, RSC advances.

[9]  P. Chu,et al.  Intercalator-assisted plasma-liquid technology: an efficient exfoliation method for few-layer two-dimensional materials , 2020, Science China Materials.

[10]  G. Shen,et al.  Recent advances in low‐dimensional semiconductor nanomaterials and their applications in high‐performance photodetectors , 2020 .

[11]  G. Shen,et al.  Polarization‐Sensitive Photodetectors: Symmetry‐Reduction Enhanced Polarization‐Sensitive Photodetection in Core–Shell SbI 3 /Sb 2 O 3 van der Waals Heterostructure (Small 7/2020) , 2020 .

[12]  Haixin Chang,et al.  Fast and controlled growth of two-dimensional layered ZrTe3 nanoribbons by chemical vapor deposition , 2019, CrystEngComm.

[13]  Z. Lou,et al.  Mixed‐Valence‐Driven Quasi‐1D SnIISnIVS3 with Highly Polarization‐Sensitive UV–vis–NIR Photoresponse , 2019, Advanced Functional Materials.

[14]  P. Tan,et al.  Optical and electrical properties of two-dimensional anisotropic materials , 2019, Journal of Semiconductors.

[15]  C. Shan,et al.  Highly Polarized Photoelectrical Response in vdW ZrS3 Nanoribbons , 2019, Advanced Electronic Materials.

[16]  A. Sinitskii,et al.  The electronic properties of Au and Pt metal contacts on quasi-one-dimensional layered TiS3(001) , 2019, Applied Physics Letters.

[17]  Guofeng Yang,et al.  Theoretical Study on the Interfacial Properties of Monolayer TiS3–Metal Contacts for Electronic Device Applications , 2019, The Journal of Physical Chemistry C.

[18]  J. Xu,et al.  Phase engineering of two-dimensional transition metal dichalcogenides , 2019, Science China Materials.

[19]  Weida Hu,et al.  Perpendicular Optical Reversal of the Linear Dichroism and Polarized Photodetection in 2D GeAs. , 2018, ACS nano.

[20]  A. Castellanos-Gómez,et al.  Large birefringence and linear dichroism in TiS3 nanosheets. , 2018, Nanoscale.

[21]  Jian Liu,et al.  Highly polarization sensitive photodetectors based on quasi-1D titanium trisulfide (TiS3) , 2018, Nanotechnology.

[22]  Shuai Zhang,et al.  Anisotropic multichain nature and filamentary superconductivity in the charge density wave system HfTe 3 , 2017 .

[23]  Huanli Dong,et al.  Short-Wave Near-Infrared Linear Dichroism of Two-Dimensional Germanium Selenide. , 2017, Journal of the American Chemical Society.

[24]  Wei Lu,et al.  Room temperature high-detectivity mid-infrared photodetectors based on black arsenic phosphorus , 2017, Science Advances.

[25]  Weida Hu,et al.  Hybrid heterojunctions based on 2D materials and 3D thin-films for high-performance photodetectors , 2017 .

[26]  Ning Li,et al.  A surface plasmonic coupled mid-long-infrared two-color quantum cascade detector , 2016 .

[27]  F. Peeters,et al.  Strong dichroic emission in the pseudo one dimensional material ZrS3. , 2016, Nanoscale.

[28]  F. Peeters,et al.  Quantum-Transport Characteristics of a p-n Junction on Single-Layer TiS3. , 2016, Chemphyschem : a European journal of chemical physics and physical chemistry.

[29]  A. Sinitskii,et al.  Time-Resolved Measurements of Photocarrier Dynamics in TiS3 Nanoribbons. , 2016, ACS applied materials & interfaces.

[30]  Lin-wang Wang,et al.  Robust band gap of TiS3 nanofilms. , 2016, Physical chemistry chemical physics : PCCP.

[31]  K. Osada,et al.  Phonon Properties of Few-Layer Crystals of Quasi-One-Dimensional ZrS3 and ZrSe3 , 2016 .

[32]  Hua Xu,et al.  Identifying the crystalline orientation of black phosphorus using angle-resolved polarized Raman spectroscopy. , 2015, Angewandte Chemie.

[33]  G. Steele,et al.  Ultrahigh Photoresponse of Few‐Layer TiS3 Nanoribbon Transistors , 2014, 1406.5003.

[34]  C. Sánchez,et al.  Optical properties of titanium trisulphide (TiS3) thin films , 2013 .

[35]  A. Radenović,et al.  Single-layer MoS2 transistors. , 2011, Nature nanotechnology.

[36]  G. Scuseria,et al.  Hybrid functionals based on a screened Coulomb potential , 2003 .

[37]  A. Mookerjee,et al.  Electronic structure, chemical bonding, and optical properties of paraelectric BaTiO 3 , 2000 .

[38]  Wang,et al.  Generalized gradient approximation for the exchange-correlation hole of a many-electron system. , 1996, Physical review. B, Condensed matter.

[39]  Burke,et al.  Generalized Gradient Approximation Made Simple. , 1996, Physical review letters.

[40]  H. Monkhorst,et al.  SPECIAL POINTS FOR BRILLOUIN-ZONE INTEGRATIONS , 1976 .

[41]  V. Carcelén,et al.  On the Photoelectrochemical Properties of TiS3 Films , 2012 .