All-Boron Aromatic Clusters as Potential New Inorganic Ligands and Building Blocks in Chemistry

Abstract Small boron clusters as individual species in the gas phase are reviewed. While the family of known boron compounds is rich and diverse, a large body of hitherto unknown chemistry of boron has been recently identified. Free boron clusters have been recently characterized using photoelectron spectroscopy and ab initio calculations, which have established the planar or quasi-planar shapes of small boron clusters for the first time. This has surprised the scientific community, as the chemistry of boron has been diversely featured by three-dimensional structures. The planarity of the species has been further elucidated on the basis of multiple aromaticity, multiple antiaromaticity, and conflicting aromaticity. Although mostly observed in the gas phase, pure boron clusters are promising molecules for coordination chemistry as potential new ligands and for materials science as new building blocks. The use of pure boron species as novel ligands has commenced, suggesting many new chemistries are ahead of us.

[1]  Ab initio many-body calculations of static dipole polarizabilities of linear carbon chains and chainlike boron clusters , 2002, cond-mat/0211522.

[2]  E. Muetterties,et al.  Chemistry of boranes. XXVIII. New polyhedral borane anions, B8H82-, B8H8.-, and B7H72- , 1967 .

[3]  Anthony B. Pinkerton,et al.  Bull. Soc. Chim. Fr. , 1957 .

[4]  Lai‐Sheng Wang,et al.  Photoelectron Spectroscopy and ab Initio Study of B3- and B4- Anions and Their Neutrals , 2003 .

[5]  I. Boustani Systematic LSD investigation on cationic boron clusters: B n+(n 2–14) , 1994 .

[6]  L. Hanley,et al.  Collision-induced dissociation and ab initio studies of boron cluster ions: determination of structures and stabilities , 1988 .

[7]  Lorenz S. Cederbaum,et al.  One-body Green's function for atoms and molecules: theory and application , 1975 .

[8]  Michael A. Robb,et al.  An evaluation of three direct MC-SCF procedures , 1992 .

[9]  Paul von Ragué Schleyer,et al.  Aromaticity in three dimensions. 4. Influence of orbital compatibility on the geometry and stability of capped annulene rings with six interstitial electrons , 1982 .

[10]  M. Sowa,et al.  Reactions of boron cluster ions (B+n, n=2–24) with N2O: NO versus NN bond activation as a function of size , 1991 .

[11]  M. Straka,et al.  Magnetic-Shielding Calculations on Al42- and Analogues. A New Family of Aromatic Molecules? , 2001 .

[12]  Qiang Xu,et al.  B4(CO)2: A New, Observable σ−π Diradical , 2002 .

[13]  M. M. Balakrishnarajan,et al.  Electronic requirements for macropolyhedral boranes. , 2002, Chemical reviews.

[14]  Molecular structure effects in the energy loss of swift boron molecular ions in solids , 2000 .

[15]  V. Schomaker,et al.  A Reinvestigation of the Structures of Diborane and Ethane by Electron Diffraction1,2 , 1951 .

[16]  Hong Wei Jin,et al.  Structure and Stability of B5, B5+, and B5- Clusters , 2002 .

[17]  Anastassia N Alexandrova,et al.  Photoelectron spectroscopy and ab initio study of the doubly antiaromatic B(6) (2-) dianion in the LiB(6) (-) cluster. , 2005, The Journal of chemical physics.

[18]  W. Price The Absorption Spectrum of Diborane , 1948 .

[19]  M. G. Papadopoulos,et al.  DFT calculations of static dipole polarizabilities and hyperpolarizabilities for the boron clusters Bn (n=3–8,10) , 2000 .

[20]  Jiří Čížek,et al.  On the Use of the Cluster Expansion and the Technique of Diagrams in Calculations of Correlation Effects in Atoms and Molecules , 2007 .

[21]  W. Lipscomb,et al.  PROBABLE STRUCTURE OF THE B10H10-2 ION , 1959 .

[22]  A. Quandt,et al.  Nanotubules of bare boron clusters: Ab initio and density functional study , 1997 .

[23]  A. Alexandrova,et al.  Flattening the b(6)h(6)(2-) octahedron Ab initio prediction of a new family of planar all-boron aromatic molecules. , 2003, Journal of the American Chemical Society.

[24]  Alexander I Boldyrev,et al.  All-metal aromaticity and antiaromaticity. , 2005, Chemical reviews.

[25]  Photoelectron spectra of aluminum cluster anions: Temperature effects and ab initio simulations , 1999, physics/9909058.

[26]  K. Morokuma,et al.  Ab initio MO study of neutral and cationic boron clusters , 1992 .

[27]  Alexander I. Boldyrev,et al.  Theoretical Evidence of Aromaticity in X3− (X = B, Al, Ga) Species , 2002 .

[28]  T. Fehlner,et al.  Synthesis and characterization of bicapped hexagonal bipyramidal 2,3-Cl(2)-1,8-[Cp*Re](2)B(6)H(4)([Cp*Re](2)[mu-eta(6):eta(6)-1,2-B(6)H(4)Cl(2)], Cp* = eta(5)-C(5)Me(5)): the missing link connecting (p - 2) skeletal electron pair hypoelectronic rhenaboranes and 24-valence electron triple-decker comp , 2001, Journal of the American Chemical Society.

[29]  I. Boustani Structure and stability of small boron clusters. A density functional theoretical study , 1995 .

[30]  R. Williams Carboranes and boranes; polyhedra and polyhedral fragments , 1971 .

[31]  Bin Song,et al.  A full-potential linear-muffin-tin-orbital molecular-dynamics study of B7, B10 and B13 clusters , 2001 .

[32]  Y. Kumashiro,et al.  Structures of the main precursors and initial decomposition products of diborane chemical vapor deposition: an experimental and ab initio molecular orbital study , 2000 .

[33]  Generalization of Heisenberg Hamiltonians to non half-filled bands: a magneto-angular effective Hamiltonian for boron clusters , 1987 .

[34]  G. Herzberg Molecular Spectra and Molecular Structure IV. Constants of Diatomic Molecules , 1939 .

[35]  J. Wynne,et al.  Boron clusters (Bn, n = 2–52) produced by laser ablation of hexagonal boron nitride , 1992 .

[36]  S. Pejovnik,et al.  Dissolution of Boron in Lithium Melt , 1995 .

[37]  Lawrence T. Scott,et al.  Gas-phase production and photoelectron spectroscopy of the smallest fullerene, C20 , 2000, Nature.

[38]  J. M. Ugalde,et al.  The Curiously Stable Cluster and its Neutral and Anionic Counterparts: The Advantages of Planarity† , 2000 .

[39]  Vyacheslav G. Zakrzewski,et al.  Vectorizable algorithm for green function and many‐body perturbation methods , 1993, J. Comput. Chem..

[40]  Isabelle Navizet,et al.  Vibrations in the B4 rhombic structure. , 2005, The Journal of chemical physics.

[41]  Kenneth S. Pitzer,et al.  Electron Deficient Molecules. I. The Principles of Hydroboron Structures , 1945 .

[42]  Hong-Xing Zhang,et al.  Structure and stability of B6, B +6, and B −6 clusters , 2003 .

[43]  F. Gu,et al.  Structure and stability of B+13 clusters , 1998 .

[44]  R. Gillespie,et al.  A “vertex electron pair” scheme (VEPS) for describing the skeletal electron distribution in borane-type clusters , 1987 .

[45]  Angel Rubio,et al.  New boron based nanostructured materials , 1999 .

[46]  J. Maier,et al.  Gas phase detection of cyclic B3: 2(2)E' <-- X2A1' electronic origin band. , 2004, The Journal of chemical physics.

[47]  Nonlinear optical properties of the rhombic B4‐cluster , 1999, Journal of computational chemistry.

[48]  REDISCOVERING THE ELEMENTS , 2004 .

[49]  F. Albert Cotton,et al.  Advanced Inorganic Chemistry , 1999 .

[50]  B. Rao,et al.  Atomic and electronic structures of neutral and charged boron and boron-rich clusters , 1997 .

[51]  Qian-Shu Li,et al.  Novel pyramidal MB7 (M = Li, Na, K, Rb, or Cs) species: Structure and aromaticity , 2004 .

[52]  Zhong Lin Wang Characterization of Nanophase Materials , 2001 .

[53]  Wenguo Xu,et al.  Structure and stability of B8 clusters , 2005 .

[54]  Miss A.O. Penney (b) , 1974, The New Yale Book of Quotations.

[55]  Lorenz S. Cederbaum,et al.  Computational methods for the one-particle green's function , 1984 .

[56]  W. Lipscomb,et al.  Structure of Cu2B10H10 , 1962 .

[57]  T. Fehlner,et al.  Synthesis and characterization of hypoelectronic rhenaboranes. Analysis of the geometric and electronic structures of species following neither borane nor metal cluster electron-counting paradigms. , 2004, Journal of the American Chemical Society.

[58]  Lai‐Sheng Wang,et al.  Observation of all-metal aromatic molecules. , 2001, Science.

[59]  R. Smalley,et al.  UPS of 2–30-atom carbon clusters: Chains and rings , 1988 .

[60]  Ranbir Singh,et al.  J. Mol. Struct. (Theochem) , 1996 .

[61]  M. Head‐Gordon,et al.  A fifth-order perturbation comparison of electron correlation theories , 1989 .

[62]  H. Kato,et al.  Stabilities of small Ben and Bn clusters (4 ≤ n ≤ 8) by vibrational analysis , 1991 .

[63]  R. J. Van Zee,et al.  Electron‐spin resonance and ground states of the boron and aluminum trimers , 1992 .

[64]  Patrick W. Fowler,et al.  Structure and Bonding in B6 - and B6: Planarity and Antiaromaticity , 2003 .

[65]  Kangnian Fan,et al.  Density functional theory study of the B6, B6+, B6−, and B62− clusters , 2003 .

[66]  Jackson,et al.  Atoms, molecules, solids, and surfaces: Applications of the generalized gradient approximation for exchange and correlation. , 1992, Physical review. B, Condensed matter.

[67]  Arachno, nido, and closo aromatic isomers of the Li6B6H6 molecule. , 2004, Inorganic chemistry.

[68]  Anastassia N Alexandrova,et al.  Molecular wheel B8(2-) as a new inorganic ligand. photoelectron spectroscopy and ab initio characterization of LiB8(-). , 2004, Inorganic chemistry.

[69]  W. Lipscomb,et al.  STRUCTURE OF B12H12-2 ION , 1960 .

[70]  J. V. Ortiz,et al.  Electron propagator calculations on the ionization energies of CrH−, MnH− and FeH− , 1990 .

[71]  M. Hawthorne,et al.  THE REACTIONS OF BIS-ACETONITRILE DECABORANE WITH AMINES , 1959 .

[72]  P. Bruna,et al.  Doubly excited states of B2, B2+, B22+ and B2− , 1990 .

[73]  P. Fowler,et al.  Ring currents in a proposed system containing planar hexacoordinate carbon, CB(2-)(6). , 2002, Chemistry.

[74]  L. Hanley,et al.  Production and collision-induced dissociation of small boron cluster ions , 1987 .

[75]  William N. Lipscomb,et al.  THE VALENCE STRUCTURE OF THE BORON HYDRIDES , 1954 .

[76]  Hans-Joachim Werner,et al.  Coupled cluster theory for high spin, open shell reference wave functions , 1993 .

[77]  J. Aihara B13+Is Highly Aromatic , 2001 .

[78]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[79]  L. Hanley,et al.  Oxidation of small boron cluster ions (B + 1-13 ) by oxygen , 1988 .

[80]  I. Boustani,et al.  Systematic ab initio investigation of bare boron clusters:mDetermination of the geometryand electronic structures of B n (n=2–14) , 1997 .

[81]  W. Siebert Advances in boron chemistry , 1997 .

[82]  Structure and stability of B4, B4+ and B4− clusters , 2003 .

[83]  P. Piquini,et al.  Structural, electronic, and vibrational properties of BxNy (x + y = 6) clusters , 2003 .

[84]  R. Ahlrichs,et al.  Treatment of electronic excitations within the adiabatic approximation of time dependent density functional theory , 1996 .

[85]  R. Gijbels,et al.  Potential energy surface of B4 and total atomization energies of B2, B3, and B4☆ , 1992 .

[86]  A. Lapicki,et al.  Interaction of small boron cluster ions with HF , 1997 .

[87]  Mark A. Miller,et al.  Archetypal energy landscapes , 1998, Nature.

[88]  Patrick W. Fowler,et al.  Patterns of Ring Currents in Conjugated Molecules: A Few-Electron Model Based on Orbital Contributions , 2001 .

[89]  W. Lipscomb,et al.  REACTIONS OF B10H10-2 ION , 1962 .

[90]  J. V. Ortiz,et al.  Comparison of perturbative and multiconfigurational electron propagator methods , 1996 .

[91]  Lai‐Sheng Wang,et al.  Probing the electronic structure of transition metal clusters from molecular to bulk-like using photoelectron spectroscopy , 1998 .

[92]  R. B. King,et al.  Chemical applications of group theory and topology. 7. A graph-theoretical interpretation of the bonding topology in polyhedral boranes, carboranes, and metal clusters , 1977 .

[93]  J. Huisman The Netherlands , 1996, The Lancet.

[94]  J. Weare,et al.  Anomalous stability of B+13 clusters , 1992 .

[95]  J. Simons,et al.  Electronic energies, geometries, and vibrational frequencies of the ground and low‐lying excited states of the boron trimer , 1991 .

[96]  J. Simons,et al.  Interactions of the B3 cluster with H atoms and H2 molecules , 1992 .

[97]  L. Curtiss,et al.  Intermolecular interactions from a natural bond orbital, donor-acceptor viewpoint , 1988 .

[98]  Zhiming Gao,et al.  Structures and stabilities of B7, B7+ and B7− clusters , 2004 .

[99]  J. Zink,et al.  Electrical or Photocontrol of the Rotary Motion of a Metallacarborane , 2004, Science.

[100]  E. Muetterties,et al.  Chemistry of Boranes. XXVII. New Polyhedral Borane Anions, B9H92- and B11H112- , 1966 .

[101]  Dennis R. Salahub,et al.  Molecular excitation energies to high-lying bound states from time-dependent density-functional response theory: Characterization and correction of the time-dependent local density approximation ionization threshold , 1998 .

[102]  Anastassia N Alexandrova,et al.  Hepta- and octacoordinate boron in molecular wheels of eight- and nine-atom boron clusters: observation and confirmation. , 2003, Angewandte Chemie.

[103]  Anastassia N Alexandrova,et al.  Search for the Lin(0/+1/-1) (n = 5-7) Lowest-Energy Structures Using the ab Initio Gradient Embedded Genetic Algorithm (GEGA). Elucidation of the Chemical Bonding in the Lithium Clusters. , 2005, Journal of chemical theory and computation.

[104]  P. Piquini,et al.  Systematic study of small BN clusters , 2001 .

[105]  Clémence Corminboeuf,et al.  Nucleus-independent chemical shifts (NICS) as an aromaticity criterion. , 2005, Chemical reviews.

[106]  R. Dickerson,et al.  Semitopological Approach to Boron‐Hydride Structures , 1957 .

[107]  I. Boustani,et al.  Ab initiodensity functional investigation ofB24clusters: Rings, tubes, planes, and cages , 2003, physics/0305103.

[108]  A. Castleman,et al.  Reactions of boron cluster anions: implication of site-specific chemical neutralization pathways , 2003 .

[109]  J. Boone Isolation of the Hexahydroclovohexaborate(2-) Anion, B6H62- , 1964 .

[110]  R. Hughes,et al.  ON THE STRUCTURE OF ELEMENTARY BORON1 , 1951 .

[111]  S. Bulusu,et al.  Planar-to-tubular structural transition in boron clusters: B20 as the embryo of single-walled boron nanotubes. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[112]  E. Jayasree,et al.  Analogies between boron and carbon. , 2003, Accounts of chemical research.

[113]  Stephen K. Ritter BEHIND THE SCENES: INSIGHTSFor good or for bad, chemists play a central role in the world of performance-enhancing drugs , 2004 .

[114]  Charles W. Bauschlicher,et al.  The structure and stability of Bn+ clusters , 1996 .

[115]  C. Bauschlicher,et al.  The structure and stability of BnH+ clusters , 1997 .

[116]  Paul von Ragué Schleyer,et al.  Nucleus-Independent Chemical Shifts:  A Simple and Efficient Aromaticity Probe. , 1996, Journal of the American Chemical Society.

[117]  G. Herzberg,et al.  Molecular Spectra and Molecular Structure , 1992 .

[118]  R J Cava,et al.  Pressure Dependence of the Superconducting Transition Temperature of Magnesium Diboride , 2001, Science.

[119]  S. Ruatta,et al.  Interaction of boron cluster ions with water: Single collision dynamics and sequential etching , 1990 .

[120]  Anastassia N. Alexandrova,et al.  Electronic Structure, Isomerism, and Chemical Bonding in B7 - and B7 , 2004 .

[121]  Hugh O. Pierson,et al.  Handbook of carbon, graphite, diamond, and fullerenes : properties, processing, and applications , 1993 .

[122]  Paul von Ragué Schleyer,et al.  Stability and Three-Dimensional Aromaticity of closo-Monocarbaborane Anions, CBn-1Hn-, and closo-Dicarboranes, C2Bn-2Hn , 1998 .

[123]  Paul R. Raithby,et al.  Metal clusters in chemistry , 1999 .

[124]  Toshimasa Ishida,et al.  Aromaticity of planar boron clusters confirmed. , 2005, Journal of the American Chemical Society.

[125]  Alfred Stock,et al.  Hydrides of boron and silicon , 1933 .

[126]  H. C. Longuet-Higgins,et al.  The normal vibrations of bridge X2 Y6 molecules , 1945, Proceedings of the Royal Society of London. Series A, Mathematical and physical sciences.

[127]  J. Nagamatsu,et al.  Superconductivity at 39 K in magnesium diboride , 2001, Nature.

[128]  Dan N. Bernardo,et al.  Structure and stability of SiBn+ AND CBn+ (n = 1–4) , 1989 .

[129]  Timothy Clark,et al.  Efficient diffuse function‐augmented basis sets for anion calculations. III. The 3‐21+G basis set for first‐row elements, Li–F , 1983 .

[130]  Zhi‐Xiang Wang,et al.  A "sea urchin" family of boranes and carboranes: the 6m + 2n electron rule. , 2003, Journal of the American Chemical Society.

[131]  H. C. Longuet-Higgins,et al.  The electronic structure of the borides MB6 , 1954, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[132]  J. Simons,et al.  Interpretation of the hyperfine coupling constants of the boron trimer in rare-gas matrices , 1993 .

[133]  C. Housecroft Transition metal boride clusters at the molecular level , 1995 .

[134]  A. Becke Density-functional thermochemistry. III. The role of exact exchange , 1993 .

[135]  R. Chang,et al.  Supercarbon : synthesis, properties and applications , 1998 .

[136]  The planar-to-tubular structural transition in boron clusters from optical absorption. , 2005, The Journal of chemical physics.

[137]  R. Parr Density-functional theory of atoms and molecules , 1989 .

[138]  P. Fowler,et al.  Current Densities of Localized and Delocalized Electrons in Molecules , 2002 .

[139]  Alexander I Boldyrev,et al.  Gold apes hydrogen. The structure and bonding in the planar B7Au2- and B7Au2 clusters. , 2006, The journal of physical chemistry. A.

[140]  H. C. Longuet-Higgins,et al.  The electronic structure of an icosahedron of boron atoms , 1955, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[141]  Q. Li,et al.  Ab Initio Study on the Potential Energy Surfaces of B4 Cluster , 2003 .

[142]  Anastassia N. Alexandrova,et al.  Electronic structure and chemical bonding of B5− and B5 by photoelectron spectroscopy and ab initio calculations , 2002 .

[143]  Valerie J. Kuck,et al.  Fullerenes : synthesis, properties, and chemistry of large carbon clusters , 1992 .

[144]  J. Maier,et al.  The near infrared 12A2″←X2A1′ electronic transition of B3 in a neon matrix , 2005 .

[145]  A. D. McLean,et al.  Contracted Gaussian basis sets for molecular calculations. I. Second row atoms, Z=11–18 , 1980 .

[146]  Michael J. Frisch,et al.  Self‐consistent molecular orbital methods 25. Supplementary functions for Gaussian basis sets , 1984 .

[147]  K. Wade The structural significance of the number of skeletal bonding electron-pairs in carboranes, the higher boranes and borane anions, and various transition-metal carbonyl cluster compounds , 1971 .

[148]  Lai‐Sheng Wang,et al.  Gold as hydrogen. An experimental and theoretical study of the structures and bonding in disilicon gold clusters Si2Au(n)- and Si2Au(n) (n = 2 and 4) and comparisons to Si2H2 and Si2H4. , 2005, The journal of physical chemistry. A.

[149]  Lai‐Sheng Wang,et al.  Photoelectron spectroscopy of size‐selected transition metal clusters: Fe−n, n=3–24 , 1995 .

[150]  P. Rosmus,et al.  Theoretical Study of the Electronically Excited States of B4, B4+ and B4− , 2005 .

[151]  Hongbin Wu,et al.  S-P HYBRIDIZATION AND ELECTRON SHELL STRUCTURES IN ALUMINUM CLUSTERS : A PHOTOELECTRON SPECTROSCOPY STUDY , 1998 .

[152]  Si‐Dian Li,et al.  [(Eta6-B6X)2M] (X=C, N; M=Mn, Fe, Co, Ni): a new class of transition-metal sandwich-type complexes. , 2005, Angewandte Chemie.

[153]  S. Ruatta,et al.  Boron cluster ion oxidation: Reactions with CO2, dissociation of boron cluster oxide (BnO+) ions, and sequential oxidation , 1991 .

[154]  Kessler,et al.  Stable configurations of carbon clusters: Chains, rings, and fullerenes. , 1995, Physical review letters.

[155]  R. Gijbels,et al.  Abinitio study of boron, nitrogen, and boron–nitrogen clusters. I. Isomers and thermochemistry of B3, B2N, BN2, and N3 , 1989 .

[156]  R. King,et al.  Spherical aromaticity: recent work on fullerenes, polyhedral boranes, and related structures. , 2005, Chemical reviews.

[157]  Y. M. Hamrick,et al.  Electron spin resonance of the boron trimer , 1991 .

[158]  W. Price The Structure of Diborane , 1947 .

[159]  Fernando Bernardi,et al.  MCSCF gradient calculation of transition structures in organic reactions , 1984 .

[160]  Earl L. Muetterties,et al.  Boron Hydride Chemistry , 1975 .

[161]  M. Zaidlewicz,et al.  From Boron Hydrides , 2007 .

[162]  J. Nilles,et al.  Boron cluster anions containing multiple B12 icosahedra , 2003 .

[163]  J. Aihara,et al.  Three-dimensional aromaticity of polyhedral boranes , 1978 .

[164]  Jun Li,et al.  Hydrocarbon analogues of boron clusters — planarity, aromaticity and antiaromaticity , 2003, Nature materials.

[165]  Xin Yang,et al.  Structure of the Na(x)Cl(x+1) (-) (x=1-4) clusters via ab initio genetic algorithm and photoelectron spectroscopy. , 2004, The Journal of chemical physics.

[166]  M. Bowers,et al.  Isomers of Small Carbon Cluster Anions: Linear Chains with up to 20 Atoms , 1993, Science.

[167]  Quantum chemistry of small clusters of elements of groups Ia, Ib, and IIa: fundamental concepts, predictions, and interpretation of experiments , 1991 .

[168]  W. Weltner,et al.  Infrared observations of the B3 and Al3 molecules in inert-gas matrices at 4 K , 1996 .

[169]  N. N. Greenwood,et al.  Chemistry of the elements , 1984 .

[170]  R. M. Minyaev,et al.  Octacoordinated main-group element centres in a planar cyclic B8 environment: an ab initio study , 2001 .

[171]  Xiaolei Zhu,et al.  Possible lowest-energy geometry of silicon clusters Si21 and Si25. , 2003, Journal of the American Chemical Society.

[172]  J. Lennard-jones,et al.  Molecular Spectra and Molecular Structure , 1929, Nature.