Using Parametric Transformations Toward Polynomial Kernels for Packing Problems Allowing Overlaps

We consider the problem of discovering overlapping communities in networks that we model as generalizations of the Set and Graph Packing problems with overlap. As usual for Set Packing problems, we seek a collection <i>S<sup>′</sup></i> ⊆ <i>S</i> consisting of at least <i>k</i> sets subject to certain disjointness restrictions. In the <i>r</i>-Set Packing with <i>t</i>-Membership, each element of <i>U</i> belongs to at most <i>t</i> sets of <i>S<sup>′</sup></i>, while in <i>r</i>-Set Packing with <i>t</i>-Overlap, each pair of sets in <i>S<sup>′</sup></i> overlaps in at most <i>t</i> elements. For both problems, each set of <i>S</i> has at most <i>r</i> elements. Similarly, both of our Graph Packing problems seek a collection <i>K</i> of at least <i>k</i> subgraphs in a graph <i>G</i>, each isomorphic to a graph <i>H</i> ∈ <i>H</i>. In <i>H</i>-Packing with <i>t</i>-Membership, each vertex of <i>G</i> belongs to at most <i>t</i> subgraphs of <i>K</i>, while in <i>H</i>-Packing with <i>t</i>-Overlap, each pair of subgraphs in <i>K</i> overlaps in at most <i>t</i> vertices. For both problems, each member of <i>H</i> has at most <i>r</i> vertices and <i>m</i> edges, where <i>t</i>, <i>r</i>, and <i>m</i> are constants. Here, we show NP-completeness results for all of our packing problems. Furthermore, we give a dichotomy result for the <i>H</i>-Packing with <i>t</i>-Membership problem analogous to the Kirkpatrick and Hell dichotomy [Kirkpatrick and Hell 1978]. Using polynomial parameter transformations, we reduce the <i>r</i>-Set Packing with <i>t</i>-Membership to a problem kernel with <i>O</i>((<i>r</i> + 1)<sup><i>r</i></sup><i>k<sup>r</sup></i>) elements and the <i>H</i>-Packing with <i>t</i>-Membership and its edge version to problem kernels with <i>O</i>((<i>r</i> + 1)<sup><i>r</i></sup><i>k<sup>r</sup></i>) and <i>O</i>((<i>m</i> + 1)<sup><i>m</i></sup><i>k<sup>m</sup></i>) vertices, respectively. On the other hand, by generalizing [Fellows et al. 2008; Moser 2009], we achieve a kernel with <i>O</i>(<i>r<sup>r</sup>k</i><sup><i>r</i> − <i>t</i> − 1</sup>) elements for the <i>r</i>-Set Packing with <i>t</i>-Overlap and kernels with <i>O</i>(<i>r<sup>r</sup>k</i><sup><i>r</i> − <i>t</i> − 1</sup>) and <i>O</i>(<i>m<sup>m</sup>k</i><sup><i>m</i> − <i>t</i> − 1</sup>) vertices for the <i>H</i>-Packing with <i>t</i>-Overlap and its edge version, respectively. In all cases, <i>k</i> is the input parameter, while <i>t</i>, <i>r</i>, and <i>m</i> are constants.

[1]  Dániel Marx,et al.  Kernelization of packing problems , 2012, SODA.

[2]  Michael R. Fellows,et al.  Finding k Disjoint Triangles in an Arbitrary Graph , 2004, WG.

[3]  David G. Kirkpatrick,et al.  On the completeness of a generalized matching problem , 1978, STOC.

[4]  Dimitrios M. Thilikos,et al.  Faster Fixed-Parameter Tractable Algorithms for Matching and Packing Problems , 2008, Algorithmica.

[5]  Faisal N. Abu-Khzam,et al.  An improved kernelization algorithm for r-Set Packing , 2010, Inf. Process. Lett..

[6]  Dániel Marx,et al.  Characterizing the easy-to-find subgraphs from the viewpoint of polynomial-time algorithms, kernels, and Turing kernels , 2015, SODA.

[7]  Ian Holyer,et al.  The NP-Completeness of Some Edge-Partition Problems , 1981, SIAM J. Comput..

[8]  Samir Khuller,et al.  A clustering scheme for hierarchical control in multi-hop wireless networks , 2001, Proceedings IEEE INFOCOM 2001. Conference on Computer Communications. Twentieth Annual Joint Conference of the IEEE Computer and Communications Society (Cat. No.01CH37213).

[9]  T. Vicsek,et al.  Uncovering the overlapping community structure of complex networks in nature and society , 2005, Nature.

[10]  Jianer Chen,et al.  An improved kernelization for P2-packing , 2010, Inf. Process. Lett..

[11]  Alejandro López-Ortiz,et al.  A Parameterized Algorithm for Packing Overlapping Subgraphs , 2014, CSR.

[12]  H. Bodlaender,et al.  Analysis of Data Reduction: Transformations give evidence for non-existence of polynomial kernels , 2008 .

[13]  Henning Fernau,et al.  A parameterized perspective on packing paths of length two , 2009, J. Comb. Optim..

[14]  Frances A. Rosamond,et al.  Dynamic Dominating Set and Turbo-Charging Greedy Heuristics , 2014 .

[15]  Hannes Moser,et al.  A Problem Kernelization for Graph Packing , 2009, SOFSEM.

[16]  Silvio Micali,et al.  An O(v|v| c |E|) algoithm for finding maximum matching in general graphs , 1980, 21st Annual Symposium on Foundations of Computer Science (sfcs 1980).

[17]  Michael Tarsi,et al.  Graph Decomposition is NP-Complete: A Complete Proof of Holyer's Conjecture , 1997, SIAM J. Comput..

[18]  Saket Saurabh,et al.  Uniform Kernelization Complexity of Hitting Forbidden Minors , 2015, ICALP.

[19]  Christian Komusiewicz,et al.  Graph-based data clustering with overlaps , 2009, Discret. Optim..

[20]  Christian Sloper,et al.  Looking at the stars , 2004, Theor. Comput. Sci..

[21]  Yossi Shiloach Another Look at the Degree Constrained Subgraph Problem , 1981, Inf. Process. Lett..

[22]  Xi Wu,et al.  Weak compositions and their applications to polynomial lower bounds for kernelization , 2012, SODA.

[23]  Alberto Caprara,et al.  Packing triangles in bounded degree graphs , 2002, Inf. Process. Lett..