Color invariant object recognition using entropic graphs

We present an object recognition approach using higher‐order color invariant features with an entropy‐based similarity measure. Entropic graphs offer an unparameterized alternative to common entropy estimation techniques, such as a histogram or assuming a probability distribution. An entropic graph estimates entropy from a spanning graph structure of sample data. We extract color invariant features from object images invariant to illumination changes in intensity, viewpoint, and shading. The Henze–Penrose similarity measure is used to estimate the similarity of two images. Our method is evaluated on the ALOI collection, a large collection of object images. This object image collection consists of 1000 objects recorded under various imaging circumstances. The proposed method is shown to be effective under a wide variety of imaging conditions. © 2007 Wiley Periodicals, Inc. Int J Imaging Syst Technol, 16, 146–153, 2006

[1]  David A. Forsyth,et al.  A novel algorithm for color constancy , 1990, International Journal of Computer Vision.

[2]  Michael Brady,et al.  Saliency, Scale and Image Description , 2001, International Journal of Computer Vision.

[3]  D. C. Koelma,et al.  A software environment for image interpretation , 1996 .

[4]  Vladimir N. Vapnik,et al.  The Nature of Statistical Learning Theory , 2000, Statistics for Engineering and Information Science.

[5]  Nuno Vasconcelos,et al.  On the efficient evaluation of probabilistic similarity functions for image retrieval , 2004, IEEE Transactions on Information Theory.

[6]  Bernt Schiele,et al.  Recognition without Correspondence using Multidimensional Receptive Field Histograms , 2004, International Journal of Computer Vision.

[7]  Sameer A. Nene,et al.  A simple algorithm for nearest neighbor search in high dimensions , 1997 .

[8]  Arnold W. M. Smeulders,et al.  Color-based object recognition , 1997, Pattern Recognit..

[9]  Arnold W. M. Smeulders,et al.  Color and Scale: The Spatial Structure of Color Images , 2000, ECCV.

[10]  A. Hero,et al.  Image matching using alpha-entropy measures and entropic graphs , 2005 .

[11]  Alfred O. Hero,et al.  Image registration in high-dimensional feature space , 2005, IS&T/SPIE Electronic Imaging.

[12]  Dennis Koelma,et al.  User transparency: a fully sequential programming model for efficient data parallel image processing , 2004, Concurr. Pract. Exp..

[13]  Thijs Westerveld,et al.  Multimedia Retrieval Using Multiple Examples , 2004, CIVR.

[14]  Brian V. Funt,et al.  Color Constant Color Indexing , 1995, IEEE Trans. Pattern Anal. Mach. Intell..

[15]  Steven A. Shafer,et al.  Using color to separate reflection components , 1985 .

[16]  Alfred O. Hero,et al.  Applications of entropic spanning graphs , 2002, IEEE Signal Process. Mag..

[17]  Bartlett W. Mel SEEMORE: Combining Color, Shape, and Texture Histogramming in a Neurally Inspired Approach to Visual Object Recognition , 1997, Neural Computation.

[18]  Arnold W. M. Smeulders,et al.  Invariant representation in image processing , 2001, Proceedings 2001 International Conference on Image Processing (Cat. No.01CH37205).

[19]  Paulo J. G. Lisboa,et al.  Translation, rotation, and scale invariant pattern recognition by high-order neural networks and moment classifiers , 1992, IEEE Trans. Neural Networks.

[20]  G LoweDavid,et al.  Distinctive Image Features from Scale-Invariant Keypoints , 2004 .

[21]  J. Friedman,et al.  Multivariate generalizations of the Wald--Wolfowitz and Smirnov two-sample tests , 1979 .

[22]  Cordelia Schmid,et al.  Local Grayvalue Invariants for Image Retrieval , 1997, IEEE Trans. Pattern Anal. Mach. Intell..

[23]  T. Gevers,et al.  UvA-DARE ( Digital Academic Repository ) Robust Histogram Construction from Color Invariants for Object Recognition , 2003 .

[24]  Vladimir Vapnik,et al.  The Nature of Statistical Learning , 1995 .

[25]  Matthew Brand,et al.  Discovery and Segmentation of Activities in Video , 2000, IEEE Trans. Pattern Anal. Mach. Intell..

[26]  Colin Studholme,et al.  An overlap invariant entropy measure of 3D medical image alignment , 1999, Pattern Recognit..

[27]  Dennis Koelma,et al.  User transparency: a fully sequential programming model for efficient data parallel image processing: Research Articles , 2004 .

[28]  Massimiliano Pontil,et al.  Support Vector Machines for 3D Object Recognition , 1998, IEEE Trans. Pattern Anal. Mach. Intell..

[29]  Peter M. A. Sloot,et al.  The distributed ASCI Supercomputer project , 2000, OPSR.

[30]  Arnold W. M. Smeulders,et al.  Color Invariance , 2001, IEEE Trans. Pattern Anal. Mach. Intell..

[31]  A. Rényi On Measures of Entropy and Information , 1961 .

[32]  Arnold W. M. Smeulders,et al.  The Amsterdam Library of Object Images , 2004, International Journal of Computer Vision.

[33]  Matthew P. Wand,et al.  Kernel Smoothing , 1995 .

[34]  N. Henze,et al.  On the multivariate runs test , 1999 .