Smoothing Newton and Quasi-Newton Methods for Mixed Complementarity Problems

The mixed complementarity problem can be reformulated as a nonsmooth equation by using the median operator. In this paper, we first study some useful properties of this reformulation and then derive the Chen-Harker-Kanzow-Smale smoothing function for the mixed complementarity problem. On the basis of this smoothing function, we present a smoothing Newton method for solving the mixed complementarity problem. Under suitable conditions, the method exhibits global and quadratic convergence properties. We also present a smoothing Broyden-like method based on the same smoothing function. Under appropriate conditions, the method converges globally and superlinearly.

[1]  J. J. Moré,et al.  A Characterization of Superlinear Convergence and its Application to Quasi-Newton Methods , 1973 .

[2]  J. J. Moré,et al.  On the Global Convergence of Broyden''s Method , 1974 .

[3]  R. Mifflin Semismooth and Semiconvex Functions in Constrained Optimization , 1977 .

[4]  F. Clarke Optimization And Nonsmooth Analysis , 1983 .

[5]  Jong-Shi Pang,et al.  A B-differentiable equation-based, globally and locally quadratically convergent algorithm for nonlinear programs, complementarity and variational inequality problems , 1991, Math. Program..

[6]  Jong-Shi Pang,et al.  An inexact NE/SQP method for solving the nonlinear complementarity problem , 1992, Comput. Optim. Appl..

[7]  Jong-Shi Pang,et al.  Nonsmooth Equations: Motivation and Algorithms , 1993, SIAM J. Optim..

[8]  Liqun Qi,et al.  A nonsmooth version of Newton's method , 1993, Math. Program..

[9]  Bintong Chen,et al.  A Non-Interior-Point Continuation Method for Linear Complementarity Problems , 1993, SIAM J. Matrix Anal. Appl..

[10]  Liqun Qi,et al.  Convergence Analysis of Some Algorithms for Solving Nonsmooth Equations , 1993, Math. Oper. Res..

[11]  L. Qi,et al.  A Globally Convergent Successive Approximation Method for Severely Nonsmooth Equations , 1995 .

[12]  J. J. Moré,et al.  Smoothing of mixed complementarity problems , 1995 .

[13]  Masao Fukushima,et al.  Modified Newton methods for solving a semismooth reformulation of monotone complementarity problems , 1996, Math. Program..

[14]  Andreas Fischer,et al.  Solution of monotone complementarity problems with locally Lipschitzian functions , 1997, Math. Program..

[15]  Francisco Facchinei,et al.  A semismooth equation approach to the solution of nonlinear complementarity problems , 1996, Math. Program..

[16]  Olvi L. Mangasarian,et al.  A class of smoothing functions for nonlinear and mixed complementarity problems , 1996, Comput. Optim. Appl..

[17]  Houyuan Jiang,et al.  Semismoothness and Superlinear Convergence in Nonsmooth Optimization and Nonsmooth Equations , 1996 .

[18]  Christian Kanzow,et al.  Some Noninterior Continuation Methods for Linear Complementarity Problems , 1996, SIAM J. Matrix Anal. Appl..

[19]  Xiaojun Chen Superlinear convergence of smoothing quasi-Newton methods for nonsmooth equations , 1997 .

[20]  Patrick T. Harker,et al.  Smooth Approximations to Nonlinear Complementarity Problems , 1997, SIAM J. Optim..

[21]  C. Kanzow,et al.  A Penalized Fischer-Burmeister Ncp-Function: Theoretical Investigation And Numerical Results , 1997 .

[22]  M. Fukushima,et al.  Equivalent Unconstrained Minimization and Global Error Bounds for Variational Inequality Problems , 1997 .

[23]  Michael C. Ferris,et al.  Complementarity and variational problems : state of the art , 1997 .

[24]  M. Fukushima,et al.  New NCP-Functions and Their Properties , 1997 .

[25]  F. Facchinei,et al.  A semismooth Newton method for variational in - equalities: The case of box constraints , 1997 .

[26]  Xiaojun Chen,et al.  Convergence of Newton's Method for Singular Smooth and Nonsmooth Equations Using Adaptive Outer Inverses , 1997, SIAM J. Optim..

[27]  Xiaojun Chen,et al.  Global and superlinear convergence of the smoothing Newton method and its application to general box constrained variational inequalities , 1998, Math. Comput..

[28]  Christian Kanzow,et al.  A continuation method for (strongly) monotone variational inequalities , 1998, Math. Program..

[29]  Masao Fukushima,et al.  Theoretical and numerical investigation of the D-gap function for box constrained variational inequalities , 1998, Math. Program..

[30]  Defeng Sun,et al.  A New Unconstrained Differentiable Merit Function for Box Constrained Variational Inequality Problems and a Damped Gauss-Newton Method , 1999, SIAM J. Optim..

[31]  L. Qi Regular Pseudo-Smooth NCP and BVIP Functions and Globally and Quadratically Convergent Generalized Newton Methods for Complementarity and Variational Inequality Problems , 1999 .

[32]  Xiaojun Chen,et al.  A penalized Fischer-Burmeister NCP-function , 2000, Math. Program..

[33]  M. Fukushima,et al.  A New Derivative-Free Descent Method for the Nonlinear Complementarity Problem , 2000 .

[34]  Xiaojun Chen,et al.  A Global Linear and Local Quadratic Continuation Smoothing Method for Variational Inequalities with Box Constraints , 2000, Comput. Optim. Appl..

[35]  Francisco Facchinei,et al.  A Theoretical and Numerical Comparison of Some Semismooth Algorithms for Complementarity Problems , 2000, Comput. Optim. Appl..

[36]  Defeng Sun,et al.  A new look at smoothing Newton methods for nonlinear complementarity problems and box constrained variational inequalities , 2000, Math. Program..