Granite petrogenesis and the δ44Ca of continental crust

[1]  O. Laurent,et al.  Reworking subducted sediments in arc magmas and the isotopic diversity of the continental crust: The case of the Ordovician Famatinian crustal section, Argentina , 2022, Earth and Planetary Science Letters.

[2]  Zhenggang Li,et al.  No measurable calcium isotopic variations of back-arc lavas across the Okinawa Trough , 2022, Marine Geology.

[3]  S. Jacobsen,et al.  Ca-isotopes as a robust tracer of magmatic differentiation , 2022, Earth and Planetary Science Letters.

[4]  Z. Eriksen,et al.  Calcium isotope constraints on OIB and MORB petrogenesis: The importance of melt mixing , 2022, Earth and Planetary Science Letters.

[5]  Jinting Kang,et al.  The factors controlling equilibrium inter-mineral Ca isotope fractionation: insights from first-principles calculations , 2022, Geochimica et Cosmochimica Acta.

[6]  Yong‐Fei Zheng,et al.  Decoupling between Mg and Ca isotopes in alkali basalts: Implications for geochemical differentiation of subduction zone fluids , 2022, Chemical Geology.

[7]  F. Liu,et al.  Ca isotopic compositions of zoned granitoid intrusion: implications for the emplacement and evolution of magma bodies , 2022, Geochimica et Cosmochimica Acta.

[8]  Si‐Liang Li,et al.  Calcium isotopes tracing secondary mineral formation in the high-relief Yalong River Basin, Southeast Tibetan Plateau. , 2022, The Science of the total environment.

[9]  E. al.,et al.  Supplemental Material: Assessing the effect of melt extraction from mushy reservoirs on compositions of granitoids: From a global database to a single batholith , 2022, Geosphere.

[10]  J. Watkins,et al.  Beyond Equilibrium: Kinetic Isotope Fractionation in High-Temperature Environments , 2022 .

[11]  P. Ulmer,et al.  Polybaric fractional crystallisation of arc magmas: an experimental study simulating trans-crustal magmatic systems , 2021, Contributions to Mineralogy and Petrology.

[12]  O. Shorttle,et al.  Global trends in novel stable isotopes in basalts: theory and observations , 2021, Goldschmidt2021 abstracts.

[13]  D. DePaolo,et al.  Radiogenic 40Ca in Seawater: Implications for Modern and Ancient Ca Cycles , 2021, ACS Earth and Space Chemistry.

[14]  Jinting Kang,et al.  Calcium isotope compositions of arc magmas: Implications for Ca and carbonate recycling in subduction zones , 2021 .

[15]  Wei-dong Sun,et al.  Calcium isotopic fractionation during magma differentiation: Constraints from volcanic glasses from the eastern Manus Basin , 2021, Geochimica et Cosmochimica Acta.

[16]  P. Fiannacca,et al.  Crustal melting vs. fractionation of basaltic magmas: Part 2, Attempting to quantify mantle and crustal contributions in granitoids , 2021 .

[17]  P. Fiannacca,et al.  Crustal melting vs. fractionation of basaltic magmas: Part 1, The bipolar disorder of granite petrogenetic models , 2021 .

[18]  T. Mittal,et al.  Calcium isotope evidence for early Archaean carbonates and subduction of oceanic crust , 2021, Nature Communications.

[19]  Jonguk Kim,et al.  Calcium Stable Isotopes of Tonga and Mariana Arc Lavas: Implications for Slab Fluid‐Mediated Carbonate Transfer in Cold Subduction Zones , 2021, Journal of Geophysical Research: Solid Earth.

[20]  J. Hao,et al.  Orogenic quiescence in Earth’s middle age , 2021, Science.

[21]  C. Chen,et al.  Reconstructing crustal thickness evolution from europium anomalies in detrital zircons , 2020, Geology.

[22]  J. Simon,et al.  Calcium isotopes in high-temperature terrestrial processes , 2020 .

[23]  Wei-dong Sun,et al.  Calcium isotopic signatures of depleted mid-ocean ridge basalts from the northeastern Pacific , 2020, Journal of Oceanology and Limnology.

[24]  Yongsheng He,et al.  Behavior of calcium isotopes during continental subduction recorded in meta-basaltic rocks , 2020, Geochimica et Cosmochimica Acta.

[25]  S. Foley,et al.  Calcium isotopic compositions of oceanic crust at various spreading rates , 2020, Geochimica et Cosmochimica Acta.

[26]  P. Scarlato,et al.  Evolution of textures, crystal size distributions and growth rates of plagioclase, clinopyroxene and spinel crystallized at variable cooling rates from a mid-ocean ridge basaltic melt , 2020 .

[27]  Shaun T. Brown,et al.  High-temperature kinetic isotope fractionation of calcium in epidosites from modern and ancient seafloor hydrothermal systems , 2020 .

[28]  Wei-dong Sun,et al.  Calcium isotopic fractionation during plate subduction: Constraints from back-arc basin basalts , 2020 .

[29]  G. Stevens,et al.  Conditions during the formation of granitic magmas by crustal melting – Hot or cold; drenched, damp or dry? , 2020 .

[30]  T. Mittal,et al.  Ca isotopes record rapid crystal growth in volcanic and subvolcanic systems , 2019, Proceedings of the National Academy of Sciences.

[31]  Shichun Huang,et al.  Calcium isotope fractionation during crustal melting and magma differentiation: Granitoid and mineral-pair perspectives , 2019, Geochimica et Cosmochimica Acta.

[32]  F. Moynier,et al.  Evolution of the Ca isotopic composition of the mantle , 2019, Geochimica et Cosmochimica Acta.

[33]  J. Cottle,et al.  Petrochronology of oxidized granulites from southern Peru , 2019, Journal of Metamorphic Geology.

[34]  T. Mittal,et al.  Kinetic and equilibrium Ca isotope effects in high-T rocks and minerals , 2019, Earth and Planetary Science Letters.

[35]  K. Cooper Time scales and temperatures of crystal storage in magma reservoirs: implications for magma reservoir dynamics , 2018, Philosophical Transactions of the Royal Society A.

[36]  D. DePaolo,et al.  Radiogenic Ca isotopes confirm post-formation K depletion of lower crust , 2019, Geochemical Perspectives Letters.

[37]  O. Bachmann,et al.  The Inner Workings of Crustal Distillation Columns; the Physical Mechanisms and Rates Controlling Phase Separation in Silicic Magma Reservoirs , 2018, Journal of Petrology.

[38]  R. Mills,et al.  Calcium and neodymium radiogenic isotopes of igneous rocks: Tracing crustal contributions in felsic magmas related to super-eruptions and continental rifting , 2018, Earth and Planetary Science Letters.

[39]  J. Moyen,et al.  Plutons and domes: the consequences of anatectic magma extraction—example from the southeastern French Massif Central , 2018, International Journal of Earth Sciences.

[40]  Jinting Kang,et al.  Calcium isotopic fractionation in mantle peridotites by melting and metasomatism and Ca isotope composition of the Bulk Silicate Earth , 2017 .

[41]  E. Watson,et al.  Kinetic Fractionation of Non-Traditional Stable Isotopes by Diffusion and Crystal Growth Reactions , 2017 .

[42]  P. Kelemen,et al.  Role of Arc Processes in the Formation of Continental Crust , 2015 .

[43]  R. Weinberg,et al.  Water-fluxed melting of the continental crust: A review , 2015 .

[44]  P. Sossi,et al.  Fe isotopes and the contrasting petrogenesis of A-, I- and S-type granite , 2015 .

[45]  B. Schoene,et al.  Short eruption window revealed by absolute crystal growth rates in a granitic magma , 2014 .

[46]  P. Ulmer,et al.  Fractional crystallization of primitive, hydrous arc magmas: an experimental study at 0.7 GPa , 2014, Contributions to Mineralogy and Petrology.

[47]  E. Tipper,et al.  Calcium isotopes in the global biogeochemical Ca cycle: Implications for development of a Ca isotope proxy , 2014 .

[48]  R. Rudnick,et al.  Composition of the Continental Crust , 2014 .

[49]  M. Brown,et al.  Consequences of open-system melting in tectonics , 2013, Journal of the Geological Society.

[50]  Y. Podladchikov,et al.  Volcanic arcs fed by rapid pulsed fluid flow through subducting slabs , 2012 .

[51]  S. Jacobsen,et al.  Stable calcium isotopic compositions of Hawaiian shield lavas: Evidence for recycling of ancient marine carbonates into the mantle , 2011 .

[52]  O. Bachmann,et al.  Thermo-mechanical reactivation of locked crystal mushes: Melting-induced internal fracturing and assimilation processes in magmas , 2011 .

[53]  O. Bachmann,et al.  Trace element indicators of crystal accumulation in silicic igneous rocks , 2010 .

[54]  O. Bachmann,et al.  Quantum magmatism: Magmatic compositional gaps generated by melt-crystal dynamics , 2010 .

[55]  E. Watson,et al.  Non-equilibrium isotopic and elemental fractionation during diffusion-controlled crystal growth under static and dynamic conditions , 2009 .

[56]  O. Bachmann,et al.  Rhyolites and their Source Mushes across Tectonic Settings , 2008 .

[57]  J. Hammer Experimental Studies of the Kinetics and Energetics of Magma Crystallization , 2008 .

[58]  B. Bonin A-type granites and related rocks: Evolution of a concept, problems and prospects , 2007 .

[59]  B. Chappell,et al.  Two contrasting granite types: 25 years later , 2001 .

[60]  E. Watson,et al.  Diffusion in silicate melts: I. Self diffusion in CaOAl 20 3SiO 2 at 1500°C and 1 GPa , 1996 .

[61]  K. Hess,et al.  Viscosities of hydrous leucogranitic melts: A non-Arrhenian model , 1996 .

[62]  A. T. Anderson,et al.  Diffusional Gradients at the Crystal/Melt Interface and Their Effect on the Compositions of Melt Inclusions , 1995, The Journal of Geology.

[63]  S. Kay,et al.  Delamination and delamination magmatism , 1993 .

[64]  K. Cashman Relationship between plagioclase crystallization and cooling rate in basaltic melts , 1993 .

[65]  G. Eby Chemical subdivision of the A-type granitoids:Petrogenetic and tectonic implications , 1992 .

[66]  R. S. Morrison,et al.  Derivation of some A-type magmas by fractionation of basaltic magma: an example from the Padthaway R , 1992 .

[67]  J. Ague Evidence for major mass transfer and volume strain during regional metamorphism of pelites , 1991 .

[68]  R. Creaser,et al.  A-type granites revisited: Assessment of a residual-source model , 1991 .

[69]  J. Whalen,et al.  A-type granites: geochemical characteristics, discrimination and petrogenesis , 1987 .

[70]  J. D. Cr-nlrnNs Origin of an A-type granite: Experimental constraints , 1986 .

[71]  W. Collins,et al.  Nature and origin of A-type granites with particular reference to southeastern Australia , 1982 .

[72]  T. Tombrello,et al.  Ca isotope fractionation on the Earth and other solar system materials , 1978 .

[73]  B. Chappell,et al.  Two contrasting granite types , 1974 .