Efficient and reliable numerical integration of exchange-correlation energies and potentials.

An adaptive numerical integrator for the exchange-correlation energy and potential is presented. It uses the diagonal elements of the exchange-correlation potential matrix as a grid generating function. The only input parameter is the requested grid tolerance. In combination with a defined cell function the adaptive grid generation scales almost linear with the number of basis functions in a system. With the adaptive numerical integrator the self-consistent field energy error, which is due to the numerical integration of the exchange-correlation energy, converges with increasing adaptive grid size to a reference value. The performance of the adaptive numerical integration is analyzed using molecules with first, second, and third row elements. Especially for transition metal systems the adaptive numerical integrator shows considerably improved performance and reliability.

[1]  Matthias Krack,et al.  AN ADAPTIVE NUMERICAL INTEGRATOR FOR MOLECULAR INTEGRALS , 1998 .

[2]  Emilio San-Fabián,et al.  Automatic numerical integration techniques for polyatomic molecules , 1994 .

[3]  Peter Politzer,et al.  Modern density functional theory: a tool for chemistry , 1995 .

[4]  S. H. Vosko,et al.  Accurate spin-dependent electron liquid correlation energies for local spin density calculations: a critical analysis , 1980 .

[5]  G. Hong,et al.  Scalar‐relativistic density functional and ab initio pseudopotential study of zero‐valent d and f metal bis‐η6‐benzene sandwich complexes M(C6H6)2 (M = Sc, Ti, Y, Zr, La, Lu, Hf, Th, U) , 2000 .

[6]  Benny G. Johnson,et al.  A standard grid for density functional calculations , 1993 .

[7]  G. Hong,et al.  A comparison of scalar-relativistic ZORA and DKH density functional schemes: monohydrides, monooxides and monofluorides of La, Lu, Ac and Lr , 2001 .

[8]  A. Köster Hermite Gaussian auxiliary functions for the variational fitting of the Coulomb potential in density functional methods , 2003 .

[9]  J. Almlöf,et al.  Integral approximations for LCAO-SCF calculations , 1993 .

[10]  Andreas M. Köster,et al.  Geometry optimization in density functional methods , 2004, J. Comput. Chem..

[11]  Hermann Stoll,et al.  Results obtained with the correlation energy density functionals of becke and Lee, Yang and Parr , 1989 .

[12]  Michael J. Frisch,et al.  Achieving linear scaling in exchange-correlation density functional quadratures , 1996 .

[13]  On the integration accuracy in molecular density functional theory calculations using Gaussian basis sets , 2000, physics/0006069.

[14]  J. Connolly,et al.  On first‐row diatomic molecules and local density models , 1979 .

[15]  Matt Challacombe,et al.  Linear scaling computation of the Fock matrix. V. Hierarchical Cubature for numerical integration of the exchange-correlation matrix , 2000 .

[16]  Jon Baker,et al.  The effect of grid quality and weight derivatives in density functional calculations , 1994 .

[17]  Parr,et al.  Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. , 1988, Physical review. B, Condensed matter.

[18]  Jackson,et al.  Variational mesh for quantum-mechanical simulations. , 1990, Physical review. B, Condensed matter.

[19]  Peter J. Knowles,et al.  Improved radial grids for quadrature in molecular density‐functional calculations , 1996 .

[20]  A. Becke A multicenter numerical integration scheme for polyatomic molecules , 1988 .

[21]  Erich Wimmer,et al.  Density functional Gaussian‐type‐orbital approach to molecular geometries, vibrations, and reaction energies , 1992 .

[22]  Peter M. W. Gill,et al.  Radial quadrature for multiexponential integrands , 2003, J. Comput. Chem..

[23]  B. Dunlap,et al.  Robust and variational fitting: Removing the four-center integrals from center stage in quantum chemistry , 2000 .

[24]  C. W. Murray,et al.  Quadrature schemes for integrals of density functional theory , 1993 .

[25]  Roland Lindh,et al.  Molecular integrals by numerical quadrature. I. Radial integration , 2001 .

[26]  A. Becke,et al.  Density-functional exchange-energy approximation with correct asymptotic behavior. , 1988, Physical review. A, General physics.

[27]  R. Ahlrichs,et al.  Efficient molecular numerical integration schemes , 1995 .