Efficient and reliable numerical integration of exchange-correlation energies and potentials.
暂无分享,去创建一个
Andreas M Köster | Roberto Flores-Moreno | J Ulises Reveles | A. Köster | R. Flores-Moreno | J. Reveles
[1] Matthias Krack,et al. AN ADAPTIVE NUMERICAL INTEGRATOR FOR MOLECULAR INTEGRALS , 1998 .
[2] Emilio San-Fabián,et al. Automatic numerical integration techniques for polyatomic molecules , 1994 .
[3] Peter Politzer,et al. Modern density functional theory: a tool for chemistry , 1995 .
[4] S. H. Vosko,et al. Accurate spin-dependent electron liquid correlation energies for local spin density calculations: a critical analysis , 1980 .
[5] G. Hong,et al. Scalar‐relativistic density functional and ab initio pseudopotential study of zero‐valent d and f metal bis‐η6‐benzene sandwich complexes M(C6H6)2 (M = Sc, Ti, Y, Zr, La, Lu, Hf, Th, U) , 2000 .
[6] Benny G. Johnson,et al. A standard grid for density functional calculations , 1993 .
[7] G. Hong,et al. A comparison of scalar-relativistic ZORA and DKH density functional schemes: monohydrides, monooxides and monofluorides of La, Lu, Ac and Lr , 2001 .
[8] A. Köster. Hermite Gaussian auxiliary functions for the variational fitting of the Coulomb potential in density functional methods , 2003 .
[9] J. Almlöf,et al. Integral approximations for LCAO-SCF calculations , 1993 .
[10] Andreas M. Köster,et al. Geometry optimization in density functional methods , 2004, J. Comput. Chem..
[11] Hermann Stoll,et al. Results obtained with the correlation energy density functionals of becke and Lee, Yang and Parr , 1989 .
[12] Michael J. Frisch,et al. Achieving linear scaling in exchange-correlation density functional quadratures , 1996 .
[13] On the integration accuracy in molecular density functional theory calculations using Gaussian basis sets , 2000, physics/0006069.
[14] J. Connolly,et al. On first‐row diatomic molecules and local density models , 1979 .
[15] Matt Challacombe,et al. Linear scaling computation of the Fock matrix. V. Hierarchical Cubature for numerical integration of the exchange-correlation matrix , 2000 .
[16] Jon Baker,et al. The effect of grid quality and weight derivatives in density functional calculations , 1994 .
[17] Parr,et al. Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. , 1988, Physical review. B, Condensed matter.
[18] Jackson,et al. Variational mesh for quantum-mechanical simulations. , 1990, Physical review. B, Condensed matter.
[19] Peter J. Knowles,et al. Improved radial grids for quadrature in molecular density‐functional calculations , 1996 .
[20] A. Becke. A multicenter numerical integration scheme for polyatomic molecules , 1988 .
[21] Erich Wimmer,et al. Density functional Gaussian‐type‐orbital approach to molecular geometries, vibrations, and reaction energies , 1992 .
[22] Peter M. W. Gill,et al. Radial quadrature for multiexponential integrands , 2003, J. Comput. Chem..
[23] B. Dunlap,et al. Robust and variational fitting: Removing the four-center integrals from center stage in quantum chemistry , 2000 .
[24] C. W. Murray,et al. Quadrature schemes for integrals of density functional theory , 1993 .
[25] Roland Lindh,et al. Molecular integrals by numerical quadrature. I. Radial integration , 2001 .
[26] A. Becke,et al. Density-functional exchange-energy approximation with correct asymptotic behavior. , 1988, Physical review. A, General physics.
[27] R. Ahlrichs,et al. Efficient molecular numerical integration schemes , 1995 .