Partitioning graphs into complete and empty graphs

Given integers j and k and a graph G, we consider partitions of the vertex set of G into j+k parts where j of these parts induce empty graphs and the remaining k induce cliques. If such a partition exists, we say G is a (j,k)-graph. For a fixed j and k we consider the maximum order n where every graph of order n is a (j,k)-graph. The split-chromatic number of G is the minimum j where G is a (j,j)-graph. Further, the cochromatic number is the minimum j+k where G is a (j,k)-graph. We examine some relations between cochromatic, split-chromatic and chromatic numbers. We also consider some computational questions related to chordal graphs and cographs.

[1]  Bjarne Toft,et al.  On critical subgraphs of colour-critical graphs , 1974, Discret. Math..

[2]  Sulamita Klein,et al.  List Partitions , 2003, SIAM J. Discret. Math..

[3]  Dominique de Werra,et al.  On the approximation of Min Split-coloring and Min Cocoloring , 2006, J. Graph Algorithms Appl..

[4]  Dominique de Werra,et al.  Partitioning cographs into cliques and stable sets , 2005, Discret. Optim..

[5]  Gordon F. Royle,et al.  Small graphs with chromatic number 5: A computer search , 1995, J. Graph Theory.

[6]  Jan Mycielski Sur le coloriage des graphs , 1955 .

[7]  Sulamita Klein,et al.  Partitioning chordal graphs into independent sets and cliques , 2004, Discret. Appl. Math..

[8]  Frank Harary,et al.  Graph Theory , 2016 .

[9]  R. Greenwood,et al.  Combinatorial Relations and Chromatic Graphs , 1955, Canadian Journal of Mathematics.

[10]  Vašek Chvátal,et al.  The minimality of the mycielski graph , 1974 .

[11]  Jeong Han Kim,et al.  The Ramsey Number R(3, t) Has Order of Magnitude t2/log t , 1995, Random Struct. Algorithms.

[12]  Chi Wang,et al.  Partitioning Permutations into Increasing and Decreasing Subsequences , 1996, J. Comb. Theory, Ser. A.

[13]  P. Erdös,et al.  Graph Theory and Probability , 1959 .

[14]  Paul Erdös,et al.  Some extremal results in cochromatic and dichromatic theory , 1991, J. Graph Theory.

[15]  David S. Johnson,et al.  Some Simplified NP-Complete Graph Problems , 1976, Theor. Comput. Sci..

[16]  G. Chartrand Graphs and Digraphs, Fourth Edition , 2004 .

[17]  P. Seymour,et al.  The Strong Perfect Graph Theorem , 2002, math/0212070.

[18]  Andreas Brandstädt,et al.  The Complexity of some Problems Related to Graph 3-colorability , 1998, Discret. Appl. Math..

[19]  Dieter Kratsch,et al.  On Cocolourings and Cochromatic Numbers of Graphs , 1994, Discret. Appl. Math..

[20]  Dominique de Werra,et al.  On Split-Coloring Problems , 2005, J. Comb. Optim..

[21]  A. Brandstädt,et al.  Graph Classes: A Survey , 1987 .

[22]  G. Chartrand,et al.  Graphs & Digraphs , 1986 .

[23]  Andreas Brandstädt Partitions of graphs into one or two independent sets and cliques , 1996, Discret. Math..

[24]  Russell Merris,et al.  Split graphs , 2003, Eur. J. Comb..