Optical Graph Recognition

Optical graph recognition (OGR) reverses graph drawing. A drawing transforms the topological structure of a graph into a graphical representation. Primarily, it maps vertices to points and displays them by icons and it maps edges to Jordan curves connecting the endpoints. OGR transforms the digital image of a drawn graph into its topological structure. It consists of four phases, preprocessing, segmentation, topology recognition, and postprocessing. OGR is based on established digital image processing techniques. Its novelty is the topology recognition where the edges are recognized with emphasis on the attachment to their vertices and on edge crossings. Our prototypical implementation OGRup shows the effectiveness of the approach and produces a GraphML file which can be used for further algorithmic studies and graph drawing tools.

[1]  Shijian Lu,et al.  Automatic optic disc detection through background estimation , 2010, 2010 IEEE International Conference on Image Processing.

[2]  Richard O. Duda,et al.  Use of the Hough transformation to detect lines and curves in pictures , 1972, CACM.

[3]  Kenji Suzuki,et al.  Linear-time connected-component labeling based on sequential local operations , 2003, Comput. Vis. Image Underst..

[4]  C. Chow,et al.  Automatic boundary detection of the left ventricle from cineangiograms. , 1972, Computers and biomedical research, an international journal.

[5]  Valérie Fiolet,et al.  Optimization of an Hough transform algorithm for the search of a center , 2008, Pattern Recognit..

[6]  Yafang Xue,et al.  Optical Character Recognition , 2022 .

[7]  Alexander Wolff,et al.  Three Rules Suffice for Good Label Placement , 2001, Algorithmica.

[8]  Pak-Ken Wong,et al.  Cages - a survey , 1982, J. Graph Theory.

[9]  U. Brandes,et al.  GraphML Progress Report ? Structural Layer Proposal , 2001 .

[10]  Giovanni Guzmán,et al.  Thinning Algorithm to Generate k-Connected Skeletons , 2004, CIARP.

[11]  David Eppstein,et al.  Lombardi Drawings of Graphs , 2010, J. Graph Algorithms Appl..

[12]  Edwin E. Catmull,et al.  A hidden-surface algorithm with anti-aliasing , 1978, SIGGRAPH.

[13]  E. R. Davies,et al.  A modified Hough scheme for general circle location , 1988, Pattern Recognit. Lett..

[14]  Til Aach,et al.  Vessel Segmentation in Angiograms using Hysteresis Thresholding , 2005, MVA.

[15]  Khalid Saeed,et al.  K3M: A universal algorithm for image skeletonization and a review of thinning techniques , 2010, Int. J. Appl. Math. Comput. Sci..

[16]  Pierre Hansen,et al.  NP-hardness of Euclidean sum-of-squares clustering , 2008, Machine Learning.

[17]  Irwin Edward Sobel,et al.  Camera Models and Machine Perception , 1970 .

[18]  Amit Kumar Das,et al.  Adjacency matrix generation from the image of graphs: a morphological approach , 1997, Machine Vision and Applications.

[19]  Anil K. Jain,et al.  Data clustering: a review , 1999, CSUR.

[20]  Carlo Tomasi,et al.  Manuscript Bleed-through Removal via Hysteresis Thresholding , 2009, 2009 10th International Conference on Document Analysis and Recognition.

[21]  Peter Waszkewitz,et al.  Industrial Image Processing: Visual Quality Control in Manufacturing , 1999 .

[22]  Simon Birk Graph recognition from image , 2010 .

[23]  Josef Kittler,et al.  The Adaptive Hough Transform , 1987, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[24]  Cordelia Schmid,et al.  Evaluation of Interest Point Detectors , 2000, International Journal of Computer Vision.

[25]  Keiichi Abe,et al.  Topological structural analysis of digitized binary images by border following , 1985, Comput. Vis. Graph. Image Process..

[26]  Peter Eades,et al.  Effects of Crossing Angles , 2008, 2008 IEEE Pacific Visualization Symposium.

[27]  John F. Canny,et al.  A Computational Approach to Edge Detection , 1986, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[28]  Christian Bachmaier,et al.  Optical Graph Recognition , 2012, J. Graph Algorithms Appl..

[29]  Jack Sklansky,et al.  Finding circles by an array of accumulators , 1975, Commun. ACM.

[30]  László Babai,et al.  Canonical labelling of graphs in linear average time , 1979, 20th Annual Symposium on Foundations of Computer Science (sfcs 1979).

[31]  Weidong Huang,et al.  Measuring Effectiveness of Graph Visualizations: A Cognitive Load Perspective , 2009, Inf. Vis..

[32]  V. Rich Personal communication , 1989, Nature.

[33]  Edward M. Reingold,et al.  Graph drawing by force‐directed placement , 1991, Softw. Pract. Exp..

[34]  G. Ringel Ein Sechsfarbenproblem auf der Kugel , 1965 .

[35]  Guojun Lu,et al.  Review of shape representation and description techniques , 2004, Pattern Recognit..

[36]  Dorothea Blostein,et al.  Handbook of Character Recognition and Document Image Analysis , 1997 .

[37]  Ching Y. Suen,et al.  Thinning Methodologies - A Comprehensive Survey , 1992, IEEE Trans. Pattern Anal. Mach. Intell..

[38]  Kesheng Wu,et al.  Fast connected-component labeling , 2009, Pattern Recognit..

[39]  Michael Ian Shamos,et al.  Computational geometry: an introduction , 1985 .

[40]  Ching Y. Suen,et al.  A fast parallel algorithm for thinning digital patterns , 1984, CACM.

[41]  Nicolai Petkov,et al.  Edge and line oriented contour detection: State of the art , 2011, Image Vis. Comput..

[42]  V. F. Leavers,et al.  Which Hough transform , 1993 .

[43]  Gunilla Borgefors,et al.  Distance transformations in digital images , 1986, Comput. Vis. Graph. Image Process..

[44]  Peter E. Hart,et al.  How the Hough Transform Was Invented , 2009 .

[45]  D.H. Rao,et al.  A Survey on Image Enhancement Techniques: Classical Spatial Filter, Neural Network, Cellular Neural Network, and Fuzzy Filter , 2006, 2006 IEEE International Conference on Industrial Technology.

[46]  Edward R. Dougherty,et al.  Hands-on Morphological Image Processing , 2003 .

[47]  Michael Forster,et al.  Gravisto: Graph Visualization Toolkit , 2004, GD.

[48]  Dana H. Ballard,et al.  Generalizing the Hough transform to detect arbitrary shapes , 1981, Pattern Recognit..

[49]  Thomas Walter,et al.  Segmentation of Color Fundus Images of the Human Retina: Detection of the Optic Disc and the Vascular Tree Using Morphological Techniques , 2001, ISMDA.

[50]  D.M. Mount,et al.  An Efficient k-Means Clustering Algorithm: Analysis and Implementation , 2002, IEEE Trans. Pattern Anal. Mach. Intell..

[51]  Josef Kittler,et al.  A Comparative Study of Hough Transform Methods for Circle Finding , 1989, Alvey Vision Conference.

[52]  Christian Bachmaier,et al.  Calibration in optical graph recognition , 2013 .

[53]  Ioannis G. Tollis,et al.  On labeling in graph visualization , 2007, Inf. Sci..

[54]  E. R. Davies,et al.  Machine vision - theory, algorithms, practicalities , 2004 .

[55]  D. Okada,et al.  Digital Image Processing for Medical Applications , 2009 .

[56]  Sven Loncaric,et al.  A survey of shape analysis techniques , 1998, Pattern Recognit..

[57]  Weidong Huang,et al.  Beyond time and error: a cognitive approach to the evaluation of graph drawings , 2008, BELIV '08.

[58]  J. van Leeuwen,et al.  Drawing Graphs , 2001, Lecture Notes in Computer Science.

[59]  J. MacQueen Some methods for classification and analysis of multivariate observations , 1967 .

[60]  Ernesto Bribiesca,et al.  State of the Art of Compactness and Circularity Measures 1 , 2009 .

[61]  E. Forgy,et al.  Cluster analysis of multivariate data : efficiency versus interpretability of classifications , 1965 .

[62]  Walter Didimo,et al.  Drawing graphs with right angle crossings , 2009, Theor. Comput. Sci..

[63]  Franklin C. Crow,et al.  The aliasing problem in computer-generated shaded images , 1977, Commun. ACM.

[64]  Christopher G. Harris,et al.  A Combined Corner and Edge Detector , 1988, Alvey Vision Conference.

[65]  N. Otsu A threshold selection method from gray level histograms , 1979 .

[66]  Michael T. Goodrich,et al.  Force-Directed Lombardi-Style Graph Drawing , 2011, Graph Drawing.

[67]  Robin J. Wilson,et al.  An Atlas of Graphs , 1999 .