Fiber supercontinuum sources (Invited)

We review supercontinuum generation in optical fibers for particular cases where the nonlinear spectral broadening is induced by pump radiation from fiber-format sources. Based on numerical simulations, our paper is intended to provide experimental design guidelines tailored ytterbium and erbium-based pumps around 1060 and 1550 nm, respectively. In particular, at 1060 nm, we consider conditions under which the generated spectra are phase and intensity stable, and we address the dependence of the supercontinuum coherence on the input pulse parameters and the fiber length. At 1550 nm, special attention is paid to the case of dispersion-flattened dispersion-decreasing fiber, where we revisit the underlying physics in detail and explicitly examine the use of such fiber for supercontinuum generation with pumps of peak power in the range 200-1200 W and sub-10 m fiber lengths. We show that supercontinuum generation under such conditions can be highly coherent and can be applied to nonlinear pulse compression.

[1]  A. J. Taylor,et al.  Transformation and control of ultra-short pulses in dispersion-engineered photonic crystal fibres , 2003, Nature.

[2]  J. Taylor,et al.  High brightness picosecond all-fiber generation in 525-1800nm range with picosecond Yb pumping. , 2005, Optics express.

[3]  J. Taylor,et al.  Solitons in the region of the minimum group-velocity dispersion of single-mode optical fibers. , 1988, Optics letters.

[4]  S. Kawanishi,et al.  Multiwavelength picosecond pulse source with low jitter and high optical frequency stability based on 200 nm supercontinuum filtering , 1995 .

[5]  Ole Bang,et al.  The role of the second zero-dispersion wavelength in generation of supercontinua and bright-bright soliton-pairs across the zero-dispersion wavelength. , 2005, Optics express.

[6]  M. Monerie,et al.  Propagation in doubly clad single-mode fibers , 1982 .

[7]  J R Taylor,et al.  Zero-dispersion wavelength decreasing photonic crystal fibers for ultraviolet-extended supercontinuum generation. , 2006, Optics express.

[8]  D. Skryabin,et al.  Theory of the soliton self-frequency shift compensation by the resonant radiationin photonic crystal fibers. , 2004, Physical review. E, Statistical, nonlinear, and soft matter physics.

[9]  J G Fujimoto,et al.  Real-time, ultrahigh-resolution, optical coherence tomography with an all-fiber, femtosecond fiber laser continuum at 1.5 microm. , 2004, Optics letters.

[10]  E. Treacy,et al.  Measurement and Interpretation of Dynamic Spectrograms of Picosecond Light Pulses , 1971 .

[11]  Alexander L Gaeta,et al.  Nonlinear propagation and continuum generation in microstructured optical fibers. , 2002, Optics letters.

[12]  H. Haus,et al.  Gigahertz-repetition-rate mode-locked fiber laser for continuum generation. , 2000, Optics letters.

[13]  R. Smith Optical power handling capacity of low loss optical fibers as determined by stimulated Raman and brillouin scattering. , 1972, Applied optics.

[14]  K Feder,et al.  Fiber-laser-based frequency comb with a tunable repetition rate. , 2004, Optics express.

[15]  Kunimasa Saitoh,et al.  Highly nonlinear dispersion-flattened photonic crystal fibers for supercontinuum generation in a telecommunication window. , 2004, Optics express.

[16]  A. Hasegawa,et al.  Nonlinear pulse propagation in a monomode dielectric guide , 1987 .

[17]  Kazuro Kikuchi,et al.  Experimental performance comparison for various continuous-wave supercontinuum schemes: ring cavity and single pass structures. , 2005, Optics express.

[18]  Nathan R Newbury,et al.  Phase-locked, erbium-fiber-laser-based frequency comb in the near infrared. , 2004, Optics letters.

[19]  Guoqing Chang,et al.  Optimization of supercontinuum generation in photonic crystal fibers for pulse compression , 2003, Conference on Lasers and Electro-Optics, 2003. CLEO '03..

[20]  Stéphane Coen,et al.  Fundamental limits to few-cycle pulse generation from compression of supercontinuum spectra generated in photonic crystal fiber. , 2004, Optics express.

[21]  D. Wandt,et al.  Supercontinuum generation with 200 pJ laser pulses in an extruded SF6 fiber at 1560 nm. , 2003, Optics express.

[22]  J. Thøgersen,et al.  Initial steps of supercontinuum generation in photonic crystal fibers , 2003 .

[23]  Francesco Poletti,et al.  Supercontinuum generation at 1.06 mum in holey fibers with dispersion flattened profiles. , 2006, Optics express.

[24]  J. Dudley,et al.  Supercontinuum generation in photonic crystal fiber , 2006 .

[25]  Zhongping Chen,et al.  Ultrahigh-resolution optical coherence tomography with a fiber laser source at 1 microm. , 2005, Optics letters.

[26]  J R Taylor,et al.  Extended blue supercontinuum generation in cascaded holey fibers. , 2005, Optics letters.

[27]  Toshio Morioka,et al.  Transform-limited, femtosecond WDM pulse generation by spectral filtering of gigahertz supercontinuum , 1994 .

[28]  S. Kobtsev,et al.  Modelling of high-power supercontinuum generation in highly nonlinear, dispersion shifted fibers at CW pump. , 2005, Optics express.

[29]  M Lehtonen,et al.  Effect of cross-phase modulation on supercontinuum generated in microstructured fibers with sub-30 fs pulses. , 2004, Optics express.

[30]  K Feder,et al.  High power, single mode, all-fiber source of femtosecond pulses at 1550 nm and its use in supercontinuum generation. , 2004, Optics express.

[31]  Toshio Morioka,et al.  Group velocity dispersion measurement using supercontinuum picosecond pulses generated in an optical fibre , 1993 .

[32]  M. Wegener,et al.  Broad bandwidths from frequency-shifting solitons in fibers. , 1989, Optics letters.

[33]  M. Nishimura,et al.  Silica-based functional fibers with enhanced nonlinearity and their applications , 1999 .

[34]  Toshio Morioka,et al.  Penalty-free, 100 Gbit/s optical transmission of <2ps supercontinuum transform-limited pulses over 40 km , 1995 .

[35]  H. Takara,et al.  100 Gbit/s optical waveform measurement with 0.6 ps resolution optical sampling using subpicosecond supercontinuum pulses , 1994 .

[36]  M. Saruwatari,et al.  Ultrawide spectral range group-velocity dispersion measurement utilizing supercontinuum in an optical fiber pumped by a 1.5 /spl mu/m compact laser source , 1995 .

[37]  C. Headley,et al.  Continuous-wave pumping in the anomalous- and normal-dispersion regimes of nonlinear fibers for supercontinuum generation. , 2005, Optics letters.

[38]  Ole Bang,et al.  Supercontinuum generation in a photonic crystal fiber with two zero-dispersion wavelengths tapered to normal dispersion at all wavelengths. , 2005, Optics express.

[39]  N. Newbury,et al.  Response dynamics of the frequency comb output from a femtosecond fiber laser. , 2005, Optics express.

[40]  Young-Geun Han,et al.  Experimental study on seed light source coherence dependence of continuous-wave supercontinuum performance. , 2006, Optics express.

[41]  Nonlinear pulse distortion at the zero dispersion wavelength of an optical fibre , 1993 .

[42]  Norihiko Nishizawa,et al.  Widely Broadened Super Continuum Generation Using Highly Nonlinear Dispersion Shifted Fibers and Femtosecond Fiber Laser , 2001 .

[43]  John M. Dudley,et al.  Numerical simulations and coherence properties of supercontinuum generation in photonic crystal and tapered optical fibers , 2002 .

[44]  F. Omenetto,et al.  Interaction of an optical soliton with a dispersive wave. , 2005, Physical review letters.

[45]  P. Russell,et al.  Soliton Self-Frequency Shift Cancellation in Photonic Crystal Fibers , 2003, Science.

[46]  Supercontinuum generation and nonlinear pulse propagation in photonic crystal fiber: influence of the frequency-dependent effective mode area , 2005 .

[47]  Frédérique Vanholsbeeck,et al.  The role of pump incoherence in continuous-wave supercontinuum generation. , 2005, Optics express.

[48]  Hidehiko Takara,et al.  Analysis and design of supercontinuum pulse generation in a single-mode optical fiber: erratum , 2001 .

[49]  N. Newbury,et al.  Elimination of pump-induced frequency jitter on fiber-laser frequency combs. , 2006, Optics letters.

[50]  David J. Richardson,et al.  A tunable, femtosecond pulse source operating in the range 1.06-1.33 microns based on an Yb doped holey fiber amplifier , 2001, CLEO 2001.

[51]  J R Taylor,et al.  Supercontinuum self-Q-switched ytterbium fiber laser. , 1997, Optics letters.

[52]  P. Petropoulos,et al.  A 36-channel x 10-GHz spectrally sliced pulse source based on supercontinuum generation in normally dispersive highly nonlinear holey fiber , 2003, IEEE Photonics Technology Letters.

[53]  P. V. Mamyshev,et al.  Numerical analysis of the Raman spectrum evolution and soliton pulse generation in single-mode fibers , 1991 .

[54]  Klaus Mølmer,et al.  Supercontinuum generation in a photonic crystal fiber with two zero dispersion wavelengths. , 2004, Optics express.

[55]  Hai-feng Liu,et al.  Higher order soliton pulse compression in dispersion-decreasing optical fibers , 1997 .

[56]  Jonathan Hu,et al.  Pulse compression using a tapered microstructure optical fiber. , 2006, Optics express.

[57]  M. Nakazawa,et al.  Fundamentals of stable continuum generation at high repetition rates , 2000, IEEE Journal of Quantum Electronics.

[58]  W Belardi,et al.  Soliton transmission and supercontinuum generation in holey fiber, using a diode pumped Ytterbium fiber source. , 2002, Optics express.

[59]  Robert R. Alfano,et al.  Intensity effects on the stimulated four photon spectra generated by picosecond pulses in optical fibers , 1987 .

[60]  M. Saruwatari,et al.  Pulse-width tunable, self-frequency conversion of short optical pulses over 200 nm based on supercontinuum generation , 1994 .

[61]  Y. Takushima,et al.  Generation of over 140-nm-wide super-continuum from a normal dispersion fiber by using a mode-locked semiconductor laser source , 1998, IEEE Photonics Technology Letters.

[62]  James P. Gordon,et al.  Femtosecond distributed soliton spectrum in fibers , 1989 .

[63]  O. Bang,et al.  Soliton collision and Raman gain regimes in continuous-wave pumped supercontinuum generation. , 2006, Optics express.

[64]  Norihiko Nishizawa,et al.  Experimental and numerical analysis of widely broadened supercontinuum generation in highly nonlinear dispersion-shifted fiber with a femtosecond pulse , 2004 .

[65]  Heinz P. Weber,et al.  Ultrashort pulse propagation, pulse breakup, and fundamental soliton formation in a single-mode optical fiber , 1987 .

[66]  M. Saruwatari,et al.  Multi-WDM-channel, Gbit/s pulse generation from a single laser source utilizing LD-pumped supercontinuum in optical fibers , 1994, IEEE Photonics Technology Letters.

[67]  H. H. Chen,et al.  Nonlinear pulse propagation in the neighborhood of the zero-dispersion wavelength of monomode optical fibers. , 1986, Optics letters.

[68]  C. Jørgensen,et al.  High-power supercontinuum generation in highly nonlinear, dispersion-shifted fibers by use of a continuous-wave Raman fiber laser. , 2004, Optics letters.

[69]  L. Ding,et al.  High-power supercontinuum generation in a nested linear cavity involving a CW Raman fiber laser , 2005, IEEE Photonics Technology Letters.

[70]  Norihiko Nishizawa,et al.  Flatly broadened, wideband and low noise supercontinuum generation in highly nonlinear hybrid fiber. , 2004, Optics express.

[71]  Keith J. Blow,et al.  Theoretical description of transient stimulated Raman scattering in optical fibers , 1989 .

[72]  Robert R. Alfano,et al.  Emission in the Region 4000 to 7000 Å Via Four-Photon Coupling in Glass , 1970 .

[73]  H. H. Kuehl Solitons on an axially nonuniform optical fiber , 1988 .

[74]  Hirokazu Kubota,et al.  Analyses of coherence-maintained ultrashort optical pulse trains and supercontinuum generation in the presence of soliton–amplified spontaneous-emission interaction , 1999 .

[75]  Toshio Morioka,et al.  More than 1000 channel optical frequency chain generation from single supercontinuum source with 12.5 GHz channel spacing , 2000 .

[76]  Eiji Yoshida,et al.  Coherence Degradation in the Process of Supercontinuum Generation in an Optical Fiber , 1998 .

[77]  John M Dudley,et al.  Coherence properties of supercontinuum spectra generated in photonic crystal and tapered optical fibers. , 2002, Optics letters.

[78]  Pedro Corredera,et al.  Supercontinuum generation using a continuous-wave Raman fiber laser , 2003 .

[79]  A. Shirakawa,et al.  Supercontinuum generation using Raman fiber laser , 2003 .

[80]  Rick Trebino,et al.  Experimental studies of the coherence of microstructure-fiber supercontinuum. , 2003, Optics express.

[81]  J W Nicholson,et al.  All-fiber, octave-spanning supercontinuum. , 2003, Optics letters.

[82]  K. Bergman,et al.  Broad-band high-repetition-rate source for spectrally sliced WDM , 1999, IEEE Photonics Technology Letters.

[83]  M N Islam,et al.  Stable supercontinuum generation in short lengths of conventional dispersion-shifted fiber. , 1999, Applied optics.

[84]  Toshio Morioka,et al.  1 Tbit/s (100 Gbit/s × 10 channel) OTDM/WDM transmission using a single supercontinuum WDM source , 1996 .

[85]  Toshio Morioka,et al.  Flatly broadened supercontinuum spectrum generated in a dispersion decreasing fibre with convex dispersion profile , 1997 .

[86]  Roger H. Stolen,et al.  Development of the stimulated Raman spectrum in single-mode silica fibers , 1984 .

[87]  J. Gordon,et al.  Theory of the soliton self-frequency shift. , 1986, Optics letters.

[88]  E. Dianov,et al.  Stimulated-Raman conversion of multisoliton pulses in quartz optical fibers , 1985 .

[89]  H. Ludvigsen,et al.  Spectral broadening of femtosecond pulses into continuum radiation in microstructured fibers. , 2002, Optics express.

[90]  A. Mussot,et al.  Spectral broadening of a partially coherent CW laser beam in single-mode optical fibers. , 2004, Optics express.

[91]  Karlsson,et al.  Cherenkov radiation emitted by solitons in optical fibers. , 1995, Physical review. A, Atomic, molecular, and optical physics.

[92]  M. Nishimura,et al.  Generation of ultra-broad-band supercontinuum by dispersion-flattened and decreasing fiber , 1998, IEEE Photonics Technology Letters.

[93]  O. Bang,et al.  Improving efficiency of supercontinuum generation in photonic crystal fibers by direct degenerate four-wave-mixing , 2002, 2002 28TH European Conference on Optical Communication.

[94]  R. Windeler,et al.  Fundamental noise limitations to supercontinuum generation in microstructure fiber. , 2002, Physical review letters.

[95]  Ozdal Boyraz,et al.  Broader and flatter supercontinuum spectra in dispersion-tailored fibers , 1997, Proceedings of Optical Fiber Communication Conference (.

[96]  Andy Chong,et al.  Fibre-based source of femtosecond pulses tunable from 1.0 to 1.3 /spl mu/m , 2004 .

[97]  H. Nagai,et al.  Generation of high-power femtosecond pulse and octave-spanning ultrabroad supercontinuum using all-fiber system , 2005, IEEE Photonics Technology Letters.

[98]  I. Ilev,et al.  Highly efficient wideband continuum generation in a single-mode optical fiber by powerful broadband laser pumping. , 1996, Applied optics.

[99]  R. Alfano,et al.  Observation of Self-Phase Modulation and Small-Scale Filaments in Crystals and Glasses , 1970 .

[100]  J R Taylor,et al.  Comblike dispersion-profiled fiber for soliton pulse train generation. , 1994, Optics letters.

[101]  Benjamin J Eggleton,et al.  Dispersive wave blue-shift in supercontinuum generation. , 2006, Optics express.

[102]  Yuichi Takushima,et al.  Continuous-wave supercontinuum laser based on an erbium-doped fiber ring cavity incorporating a highly nonlinear optical fiber. , 2005, Optics letters.

[103]  R. Leonhardt,et al.  Supercontinuum generation by stimulated Raman scattering and parametric four-wave mixing in photonic crystal fibers , 2002 .

[104]  James Fujimoto,et al.  Optical coherence tomography using a continuous-wave, high-power, Raman continuum light source. , 2004, Optics express.

[105]  D. Richardson,et al.  Soliton pulse compression in dispersion-decreasing fiber. , 1993, Optics letters.

[106]  Stegeman,et al.  Adiabatic compression of Schrödinger solitons due to the combined perturbations of higher-order dispersion and delayed nonlinear response. , 1993, Physical review letters.

[107]  Norihiko Nishizawa,et al.  Widely wavelength-tunable ultrashort pulse generation using polarization maintaining optical fibers , 2001 .

[108]  Chinlon Lin,et al.  New nanosecond continuum for excited-state spectroscopy , 1976 .

[109]  Jens Limpert,et al.  High average power supercontinuum generation in photonic crystal fibers , 2003 .

[110]  D V Skryabin,et al.  Four-wave mixing of linear waves and solitons in fibers with higher-order dispersion. , 2004, Optics letters.

[111]  A. Stentz,et al.  Visible continuum generation in air–silica microstructure optical fibers with anomalous dispersion at 800 nm , 2000 .

[112]  Toshio Morioka,et al.  Nearly penalty-free, <4 ps supercontinuum Gbit/s pulse generation over 1535-1560 nm , 1994 .

[113]  J R Taylor,et al.  Continuous-wave, high-power, Raman continuum generation in holey fibers. , 2003, Optics letters.

[114]  Toshio Morioka,et al.  More than 100-wavelength-channel picosecond optical pulse generation from single laser source using supercontinuum in optical fibres , 1993 .

[115]  T Yamamoto,et al.  Supercontinuum generation at 1.55 m in a dispersion-flattened polarization-maintaining photonic crystal fiber. , 2003, Optics express.

[116]  C. Headley,et al.  Pulsed and continuous-wave supercontinuum generation in highly nonlinear, dispersion-shifted fibers , 2003 .

[117]  Toshio Morioka,et al.  200 Gbit/s, 100 km time-division-multiplexed optical transmission using supercontinuum pulses with prescaled PLL timing extraction and all-optical demultiplexing , 1995 .

[118]  M. Yan,et al.  Cross-coherence measurements of supercontinua generated in highly-nonlinear, dispersion shifted fiber at 1550 nm. , 2004, Optics express.

[119]  L. Larger,et al.  Parabolic pulse generation in comb-like profiled dispersion decreasing fibre , 2006 .