Integrated spatial multiplexing of heralded single-photon sources

The non-deterministic nature of photon sources is a key limitation for single-photon quantum processors. Spatial multiplexing overcomes this by enhancing the heralded single-photon yield without enhancing the output noise. Here the intrinsic statistical limit of an individual source is surpassed by spatially multiplexing two monolithic silicon-based correlated photon pair sources in the telecommunications band, demonstrating a 62.4% increase in the heralded single-photon output without an increase in unwanted multipair generation. We further demonstrate the scalability of this scheme by multiplexing photons generated in two waveguides pumped via an integrated coupler with a 63.1% increase in the heralded photon rate. This demonstration paves the way for a scalable architecture for multiplexing many photon sources in a compact integrated platform and achieving efficient two-photon interference, required at the core of optical quantum computing and quantum communication protocols.

[1]  A. Politi,et al.  Silica-on-Silicon Waveguide Quantum Circuits , 2008, Science.

[2]  A. Politi,et al.  Shor’s Quantum Factoring Algorithm on a Photonic Chip , 2009, Science.

[3]  H. J. Kimble,et al.  The quantum internet , 2008, Nature.

[4]  V. Scarani,et al.  Two independent photon pairs versus four-photon entangled states in parametric down conversion , 2003, quant-ph/0310167.

[5]  T. Shoji,et al.  Microphotonics devices based on silicon microfabrication technology , 2005, IEEE Journal of Selected Topics in Quantum Electronics.

[6]  A. Crespi,et al.  Integrated multimode interferometers with arbitrary designs for photonic boson sampling , 2013, Nature Photonics.

[7]  Jeremy L O'Brien,et al.  Laser written waveguide photonic quantum circuits. , 2009, Optics express.

[8]  Liam O'Faolain,et al.  Four-wave mixing in photonic crystal waveguides: slow light enhancement and limitations. , 2011, Optics express.

[9]  Andrew G. White,et al.  Photonic Boson Sampling in a Tunable Circuit , 2012, Science.

[10]  M P Almeida,et al.  Reducing multi-photon rates in pulsed down-conversion by temporal multiplexing. , 2011, Optics express.

[11]  Kyo Inoue,et al.  1.5-microm band quantum-correlated photon pair generation in dispersion-shifted fiber: suppression of noise photons by cooling fiber. , 2005, Optics express.

[12]  Fedor Jelezko,et al.  Single defect centres in diamond: A review , 2006 .

[13]  T. F. Krauss,et al.  Characteristics of Correlated Photon Pairs Generated in Ultracompact Silicon Slow-Light Photonic Crystal Waveguides , 2012, IEEE Journal of Selected Topics in Quantum Electronics.

[14]  F. Xia,et al.  Heralded single photons from a silicon nanophotonic chip , 2012, 2012 Conference on Lasers and Electro-Optics (CLEO).

[15]  B. Eggleton,et al.  Low Raman-noise correlated photon-pair generation in a dispersion-engineered chalcogenide As2S3 planar waveguide. , 2012, Optics letters.

[16]  E. Jeffrey,et al.  Towards a periodic deterministic source of arbitrary single-photon states , 2004 .

[17]  O. Alibart,et al.  A quantum relay chip based on telecommunication integrated optics technology , 2011 .

[18]  M. Lipson,et al.  Generation of correlated photons in nanoscale silicon waveguides. , 2006, Optics express.

[19]  Yoshihisa Yamamoto,et al.  Indistinguishable photons from a single-photon device , 2002, Nature.

[20]  Keiji Sasaki,et al.  Beating the Standard Quantum Limit with Four-Entangled Photons , 2007, Science.

[21]  H. Takesue,et al.  Generation of time-bin entangled photon pairs by cascaded second-order nonlinearity in a single periodically poled LiNbO(3) waveguide. , 2010, Optics letters.

[22]  R. Rosenfeld Nature , 2009, Otolaryngology--head and neck surgery : official journal of American Academy of Otolaryngology-Head and Neck Surgery.

[23]  Robert C. Wolpert,et al.  A Review of the , 1985 .

[24]  A. Migdall,et al.  A versatile waveguide source of photon pairs for chip-scale quantum information processing. , 2009, Optics express.

[25]  J. P. Sprengers,et al.  Waveguide superconducting single-photon detectors for integrated quantum photonic circuits , 2011, 1108.5107.

[26]  Jeffrey H Shapiro,et al.  On-demand single-photon generation using a modular array of parametric downconverters with electro-optic polarization controls. , 2007, Optics letters.

[27]  O. Painter,et al.  Ultra-low-loss optical delay line on a silicon chip , 2012, Nature Communications.

[28]  X-Q Zhou,et al.  Experimental realization of Shor's quantum factoring algorithm using qubit recycling , 2011, Nature Photonics.

[29]  Peter C Humphreys,et al.  On-chip low loss heralded source of pure single photons. , 2013, Optics express.

[30]  C. Silberhorn,et al.  Limits on the deterministic creation of pure single-photon states using parametric down-conversion , 2011, 1111.4095.

[31]  Philip Walther,et al.  Experimental boson sampling , 2012, Nature Photonics.

[32]  Thomas F. Krauss,et al.  Multi-photon absorption limits to heralded single photon sources , 2013, Scientific Reports.

[33]  G. Solomon,et al.  Coalescence of single photons emitted by disparate single-photon sources: the example of InAs quantum dots and parametric down-conversion sources. , 2011, Physical review letters.

[34]  Christine Silberhorn,et al.  An optimized photon pair source for quantum circuits. , 2013, Optics express.

[35]  D. Branning,et al.  Tailoring single-photon and multiphoton probabilities of a single-photon on-demand source , 2002, quant-ph/0205140.

[36]  Alex S. Clark,et al.  All-optical-fiber polarization-based quantum logic gate , 2009 .

[37]  S. Massar,et al.  Continuous wave photon pair generation in silicon-on-insulator waveguides and ring resonators. , 2009, Optics express.

[38]  T. Krauss,et al.  Slow-light enhanced correlated photon pair generation in a silicon photonic crystal waveguide. , 2011, Optics letters.

[39]  Kerry J. Vahala,et al.  Ultra-Low-Loss Optical Delay Line on a Silicon Chip , 2011 .

[40]  R. H. Brown,et al.  Correlation between Photons in two Coherent Beams of Light , 1956, Nature.

[41]  B. J. Metcalf,et al.  Boson Sampling on a Photonic Chip , 2012, Science.

[42]  Oskar Painter,et al.  A Silicon-Chip Source of Bright Photon-Pair Comb , 2012, 1210.4455.

[43]  Johannes Kofler,et al.  Experimental generation of single photons via active multiplexing , 2010, 1007.4798.

[44]  E. Knill,et al.  A scheme for efficient quantum computation with linear optics , 2001, Nature.

[45]  Zhiqiang Zheng,et al.  Transparent electro-optic ceramics and devices , 2005, SPIE/COS Photonics Asia.

[46]  J. Bowers,et al.  Low-loss Si3N4 arrayed-waveguide grating (de)multiplexer using nano-core optical waveguides. , 2011, Optics express.

[47]  Dirk Englund,et al.  Efficient generation of single and entangled photons on a silicon photonic integrated chip , 2011 .

[48]  Hiroki Takesue,et al.  Effects of multiple pairs on visibility measurements of entangled photons generated by spontaneous parametric processes , 2009, 0907.4535.

[49]  Hiroki Takesue,et al.  Entanglement generation using silicon wire waveguide , 2007, 2011 IEEE Photonics Society Summer Topical Meeting Series.

[50]  T. Krauss,et al.  Systematic design of flat band slow light in photonic crystal waveguides. , 2008, Optics express.

[51]  M. Thompson,et al.  Generating, manipulating and measuring entanglement and mixture with a reconfigurable photonic circuit , 2012 .

[52]  Mark Beck,et al.  Comparing measurements of g (2) (0) performed with different coincidence detection techniques , 2007 .