Assembly of Outer Membrane β-Barrel Proteins: the Bam Complex

The major class of integral proteins found in the outer membrane (OM) of E. coli and Salmonella adopt a β-barrel conformation (OMPs). OMPs are synthesized in the cytoplasm with a typical signal sequence at the amino terminus, which directs them to the secretion machinery (SecYEG) located in the inner membrane for translocation to the periplasm. Chaperones such as SurA, or DegP and Skp, escort these proteins across the aqueous periplasm protecting them from aggregation. The chaperones then deliver OMPs to a highly conserved outer membrane assembly site termed the Bam complex. In E. coli, the Bam complex is composed of an essential OMP, BamA, and four associated OM lipoproteins, BamBCDE, one of which, BamD, is also essential. Here we provide an overview of what we know about the process of OMP assembly and outline the various hypotheses that have been proposed to explain how proteins might be integrated into the asymmetric OM lipid bilayer in an environment that lacks obvious energy sources. In addition, we describe the envelope stress responses that ensure the fidelity of OM biogenesis and how factors, such as phage and certain toxins, have coopted this essential machine to gain entry into the cell.

[1]  Henri G. Gerken,et al.  Involvement and necessity of the Cpx regulon in the event of aberrant β‐barrel outer membrane protein assembly , 2010, Molecular microbiology.

[2]  Sri H. Ramarathinam,et al.  A Modular BAM Complex in the Outer Membrane of the α-Proteobacterium Caulobacter crescentus , 2010, PloS one.

[3]  Vivek K. Mutalik,et al.  Promoter Strength Properties of the Complete Sigma E Regulon of Escherichia coli and Salmonella enterica , 2009, Journal of bacteriology.

[4]  J. Tommassen,et al.  The β-Barrel Outer Membrane Protein Assembly Complex of Neisseria meningitidis , 2009, Journal of bacteriology.

[5]  I. Henderson,et al.  The orientation of a tandem POTRA domain pair, of the beta-barrel assembly protein BamA, determined by PELDOR spectroscopy. , 2009, Structure.

[6]  T. Silhavy,et al.  Transport of lipopolysaccharide across the cell envelope: the long road of discovery , 2009, Nature Reviews Microbiology.

[7]  B. Clantin,et al.  First structural insights into the TpsB/Omp85 superfamily , 2009, Biological chemistry.

[8]  Jack Iwanczyk,et al.  Escherichia coli DegP: a Structure-Driven Functional Model , 2009, Journal of bacteriology.

[9]  E. Bottreau,et al.  Investigation of the role of the BAM complex and SurA chaperone in outer-membrane protein biogenesis and type III secretion system expression in Salmonella. , 2009, Microbiology.

[10]  D. Vertommen,et al.  Characterization of the role of the Escherichia coli periplasmic chaperone SurA using differential proteomics , 2009, Proteomics.

[11]  J. Tommassen,et al.  Biogenesis of β-barrel membrane proteins in bacteria and eukaryotes: evolutionary conservation and divergence , 2009, Cellular and Molecular Life Sciences.

[12]  X. Bai,et al.  Bowl-shaped oligomeric structures on membranes as DegP's new functional forms in protein quality control , 2009, Proceedings of the National Academy of Sciences.

[13]  A. Pardi,et al.  The cavity-chaperone Skp protects its substrate from aggregation but allows independent folding of substrate domains , 2009, Proceedings of the National Academy of Sciences.

[14]  D. A. Low,et al.  Contact-Dependent Growth Inhibition Causes Reversible Metabolic Downregulation in Escherichia coli , 2009, Journal of bacteriology.

[15]  T. Raivio,et al.  Characterization of the Cpx Regulon in Escherichia coli Strain MC4100 , 2008, Journal of bacteriology.

[16]  Jason E. Heindl,et al.  Contribution of the Periplasmic Chaperone Skp to Efficient Presentation of the Autotransporter IcsA on the Surface of Shigella flexneri , 2008, Journal of bacteriology.

[17]  M. Sousa,et al.  Crystal structure of YaeT: conformational flexibility and substrate recognition. , 2008, Structure.

[18]  A. Görg,et al.  Identification of potential substrate proteins for the periplasmic Escherichia coli chaperone Skp , 2008, Proteomics.

[19]  Sarah E. Ades,et al.  Regulation by destruction: design of the sigmaE envelope stress response. , 2008, Current opinion in microbiology.

[20]  Kentaro Inoue,et al.  Two distinct Omp85 paralogs in the chloroplast outer envelope membrane are essential for embryogenesis in Arabidopsis thaliana , 2008, Plant signaling & behavior.

[21]  B. Kallipolitis,et al.  Down-regulation of outer membrane proteins by noncoding RNAs: unraveling the cAMP-CRP- and sigmaE-dependent CyaR-ompX regulatory case. , 2008, Journal of molecular biology.

[22]  S. Aoki,et al.  Contact‐dependent growth inhibition requires the essential outer membrane protein BamA (YaeT) as the receptor and the inner membrane transport protein AcrB , 2008, Molecular microbiology.

[23]  Mithilesh Mishra,et al.  Faculty Opinions recommendation of High-throughput, quantitative analyses of genetic interactions in E. coli. , 2008 .

[24]  T. Lithgow,et al.  Protein secretion and outer membrane assembly in Alphaproteobacteria , 2008, FEMS microbiology reviews.

[25]  Z. Zhou,et al.  Activation of DegP chaperone-protease via formation of large cage-like oligomers upon binding to substrate proteins , 2008, Proceedings of the National Academy of Sciences.

[26]  C. Whitfield,et al.  Periplasmic export machines for outer membrane assembly. , 2008, Current opinion in structural biology.

[27]  H. Saibil,et al.  Structural basis for the regulated protease and chaperone function of DegP , 2008, Nature.

[28]  A. Driessen,et al.  Protein translocation across the bacterial cytoplasmic membrane. , 2008, Annual review of biochemistry.

[29]  I. Henderson,et al.  Fold and function of polypeptide transport‐associated domains responsible for delivering unfolded proteins to membranes , 2008, Molecular microbiology.

[30]  A. Spisni,et al.  The solution structure of the outer membrane lipoprotein OmlA from Xanthomonas axonopodis pv. citri reveals a protein fold implicated in protein–protein interaction , 2008, Proteins.

[31]  Andrea Carpentieri,et al.  Functional Analysis of the Protein Machinery Required for Transport of Lipopolysaccharide to the Outer Membrane of Escherichia coli , 2008, Journal of bacteriology.

[32]  T. Silhavy,et al.  Identification of two inner-membrane proteins required for the transport of lipopolysaccharide to the outer membrane of Escherichia coli , 2008, Proceedings of the National Academy of Sciences.

[33]  P. Vuong,et al.  Analysis of YfgL and YaeT Interactions through Bioinformatics, Mutagenesis, and Biochemistry , 2007, Journal of bacteriology.

[34]  J. Tommassen,et al.  Functioning of outer membrane protein assembly factor Omp85 requires a single POTRA domain , 2007, EMBO reports.

[35]  Jörg H Kleinschmidt,et al.  The trimeric periplasmic chaperone Skp of Escherichia coli forms 1:1 complexes with outer membrane proteins via hydrophobic and electrostatic interactions. , 2007, Journal of molecular biology.

[36]  D. Mckay,et al.  The periplasmic bacterial molecular chaperone SurA adapts its structure to bind peptides in different conformations to assert a sequence preference for aromatic residues. , 2007, Journal of molecular biology.

[37]  Daniel Kahne,et al.  Defining the roles of the periplasmic chaperones SurA, Skp, and DegP in Escherichia coli. , 2007, Genes & development.

[38]  B. Clantin,et al.  Structure of the Membrane Protein FhaC: A Member of the Omp85-TpsB Transporter Superfamily , 2007, Science.

[39]  J. Tommassen Getting Into and Through the Outer Membrane , 2007, Science.

[40]  Piotr Sliz,et al.  Structure and Function of an Essential Component of the Outer Membrane Protein Assembly Machine , 2007, Science.

[41]  Darren L. Smith,et al.  Short-Tailed Stx Phages Exploit the Conserved YaeT Protein To Disseminate Shiga Toxin Genes among Enterobacteria , 2007, Journal of bacteriology.

[42]  L. Bossi,et al.  A small RNA downregulates LamB maltoporin in Salmonella , 2007, Molecular microbiology.

[43]  E. Laskowska,et al.  Characterization of the chaperone-like activity of HtrA (DegP) protein from Escherichia coli under the conditions of heat shock. , 2007, Archives of biochemistry and biophysics.

[44]  S. Mangoli,et al.  Involvement of a periplasmic protein kinase in DNA strand break repair and homologous recombination in Escherichia coli , 2007, Molecular microbiology.

[45]  M. Chami,et al.  YaeT‐independent multimerization and outer membrane association of secretin PulD , 2007, Molecular microbiology.

[46]  Daniel Kahne,et al.  Lipoprotein SmpA is a component of the YaeT complex that assembles outer membrane proteins in Escherichia coli , 2007, Proceedings of the National Academy of Sciences.

[47]  R. Heermann,et al.  Purification, Reconstitution, and Characterization of the CpxRAP Envelope Stress System of Escherichia coli* , 2007, Journal of Biological Chemistry.

[48]  R. Ghirlando,et al.  Role of the PDZ Domains in Escherichia coli DegP Protein , 2007, Journal of bacteriology.

[49]  E. Wagner,et al.  Sigma E controls biogenesis of the antisense RNA MicA , 2007, Nucleic acids research.

[50]  T. Silhavy,et al.  A Suppressor of Cell Death Caused by the Loss of σE Downregulates Extracytoplasmic Stress Responses and Outer Membrane Vesicle Production in Escherichia coli , 2006, Journal of bacteriology.

[51]  R. Ghirlando,et al.  The Inner Cavity of Escherichia coli DegP Protein Is Not Essentialfor Molecular Chaperone and Proteolytic Activity , 2006, Journal of bacteriology.

[52]  H. Mori,et al.  Genome-Wide Screening of Genes Required for Swarming Motility in Escherichia coli K-12 , 2006, Journal of bacteriology.

[53]  N. Wingreen,et al.  Kinetic Analysis of the Assembly of the Outer Membrane Protein LamB in Escherichia coli Mutants Each Lacking a Secretion or Targeting Factor in a Different Cellular Compartment , 2006, Journal of bacteriology.

[54]  Riccardo Villa,et al.  Characterization of lptA and lptB, Two Essential Genes Implicated in Lipopolysaccharide Transport to the Outer Membrane of Escherichia coli , 2006, Journal of bacteriology.

[55]  J. Tommassen Biochemistry. Getting into and through the outer membrane. , 2007, Science.

[56]  J. Vogel,et al.  σE-dependent small RNAs of Salmonella respond to membrane stress by accelerating global omp mRNA decay , 2006, Molecular microbiology.

[57]  P. Valentin‐Hansen,et al.  Conserved small non-coding RNAs that belong to the sigmaE regulon: role in down-regulation of outer membrane proteins. , 2006, Journal of molecular biology.

[58]  A. Engel,et al.  Bacterial outer membrane secretin PulD assembles and inserts into the inner membrane in the absence of its pilotin , 2006, The EMBO journal.

[59]  James H. Naismith,et al.  Wza the translocon for E. coli capsular polysaccharides defines a new class of membrane protein , 2006, Nature.

[60]  J. Tommassen,et al.  Assembly Factor Omp85 Recognizes Its Outer Membrane Protein Substrates by a Species-Specific C-Terminal Motif , 2006, PLoS biology.

[61]  N. Bumstead,et al.  The YfgL Lipoprotein Is Essential for Type III Secretion System Expression and Virulence of Salmonella enterica Serovar Enteritidis , 2006, Infection and Immunity.

[62]  Emily S. Charlson,et al.  Differential Effects of yfgL Mutation on Escherichia coli Outer Membrane Proteins and Lipopolysaccharide , 2006, Journal of bacteriology.

[63]  C. Andersen,et al.  Characterization of pores formed by YaeT (Omp85) from Escherichia coli. , 2006, Journal of biochemistry.

[64]  T. Silhavy,et al.  Identification of a protein complex that assembles lipopolysaccharide in the outer membrane of Escherichia coli. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[65]  T. Cavalier-smith,et al.  Rooting the tree of life by transition analyses , 2006, Biology Direct.

[66]  T. Silhavy,et al.  YfiO stabilizes the YaeT complex and is essential for outer membrane protein assembly in Escherichia coli , 2006, Molecular microbiology.

[67]  B. Clantin,et al.  Secretion signal of the filamentous haemagglutinin, a model two‐partner secretion substrate , 2006, Molecular microbiology.

[68]  J. Kleinschmidt Folding kinetics of the outer membrane proteins OmpA and FomA into phospholipid bilayers. , 2006, Chemistry and physics of lipids.

[69]  H. Skovierová,et al.  Identification of the σE regulon of Salmonella enterica serovar Typhimurium , 2006 .

[70]  Pål Puntervoll,et al.  The major outer membrane protein of Fusobacterium nucleatum (FomA) folds and inserts into lipid bilayers via parallel folding pathways. , 2006, Journal of molecular biology.

[71]  C. Gross,et al.  Conserved and Variable Functions of the σE Stress Response in Related Genomes , 2005, PLoS biology.

[72]  T. Lithgow,et al.  Molecular architecture and function of the Omp85 family of proteins , 2005, Molecular microbiology.

[73]  G. von Heijne,et al.  Protein Complexes of the Escherichia coli Cell Envelope* , 2005, Journal of Biological Chemistry.

[74]  G. Moore,et al.  Cell entry mechanism of enzymatic bacterial colicins: porin recruitment and the thermodynamics of receptor binding. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[75]  R. Misra,et al.  YaeT (Omp85) affects the assembly of lipid‐dependent and lipid‐independent outer membrane proteins of Escherichia coli , 2005, Molecular microbiology.

[76]  S. Aoki,et al.  Contact-Dependent Inhibition of Growth in Escherichia coli , 2005, Science.

[77]  K. Kurokawa,et al.  Cell lysis directed by sigmaE in early stationary phase and effect of induction of the rpoE gene on global gene expression in Escherichia coli. , 2005, Microbiology.

[78]  C. Raetz,et al.  Loss of Outer Membrane Proteins without Inhibition of Lipid Export in an Escherichia coli YaeT Mutant* , 2005, Journal of Biological Chemistry.

[79]  C. Gross,et al.  Characterization of Six Lipoproteins in the σE Regulon , 2005 .

[80]  J. Schneider-Mergener,et al.  The Periplasmic Chaperone SurA Exploits Two Features Characteristic of Integral Outer Membrane Proteins for Selective Substrate Recognition* , 2005, Journal of Biological Chemistry.

[81]  H. Nikaido Restoring permeability barrier function to outer membrane. , 2005, Chemistry & biology.

[82]  T. Silhavy,et al.  Chemical Conditionality A GeneticStrategy to Probe Organelle Assembly , 2005, Cell.

[83]  Daniel Kahne,et al.  Identification of a Multicomponent Complex Required for Outer Membrane Biogenesis in Escherichia coli , 2005, Cell.

[84]  T. Silhavy,et al.  Sensing external stress: watchdogs of the Escherichia coli cell envelope. , 2005, Current opinion in microbiology.

[85]  N. Barnich,et al.  Strong Decrease in Invasive Ability and Outer Membrane Vesicle Release in Crohn's Disease-Associated Adherent-Invasive Escherichia coli Strain LF82 with the yfgL Gene Deleted , 2005, Journal of bacteriology.

[86]  J. Lazzaroni,et al.  CpxR/OmpR Interplay Regulates Curli Gene Expression in Response to Osmolarity in Escherichia coli , 2005, Journal of bacteriology.

[87]  D. Missiakas,et al.  Changes in lipopolysaccharide structure induce the σE‐dependent response of Escherichia coli , 2005 .

[88]  A. von Haeseler,et al.  Conserved pore‐forming regions in polypeptide‐ transporting proteins , 2005, The FEBS journal.

[89]  J. Tommassen,et al.  Lipopolysaccharide Transport to the Bacterial Outer Membrane in Spheroplasts* , 2005, Journal of Biological Chemistry.

[90]  L. Tamm,et al.  Folding and assembly of β-barrel membrane proteins , 2004 .

[91]  C. Raetz,et al.  MsbA-dependent Translocation of Lipids across the Inner Membrane of Escherichia coli* , 2004, Journal of Biological Chemistry.

[92]  Huilin Li,et al.  Evidence for conservation of architecture and physical properties of Omp85-like proteins throughout evolution. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[93]  S. Matsuyama,et al.  Effects of Lipoprotein Overproduction on the Induction of DegP (HtrA) Involved in Quality Control in the Escherichia coli Periplasm* , 2004, Journal of Biological Chemistry.

[94]  I. Korndörfer,et al.  Structure of the periplasmic chaperone Skp suggests functional similarity with cytosolic chaperones despite differing architecture , 2004, Nature Structural &Molecular Biology.

[95]  F. Mompart,et al.  Identification of a new Salmonella enterica serovar Enteritidis locus involved in cell invasion and in the colonisation of chicks. , 2004, Research in microbiology.

[96]  M. Sousa,et al.  Crystal structure of Skp, a prefoldin-like chaperone that protects soluble and membrane proteins from aggregation. , 2004, Molecular cell.

[97]  Kentaro Inoue,et al.  The chloroplastic protein translocation channel Toc75 and its paralog OEP80 represent two distinct protein families and are targeted to the chloroplastic outer envelope by different mechanisms. , 2004, The Plant journal : for cell and molecular biology.

[98]  D. Mckay,et al.  Binding of phage‐display‐selected peptides to the periplasmic chaperone protein SurA mimics binding of unfolded outer membrane proteins , 2004, FEBS letters.

[99]  R. Waller,et al.  The Omp85 family of proteins is essential for outer membrane biogenesis in mitochondria and bacteria , 2004, The Journal of cell biology.

[100]  K. Hadian,et al.  The periplasmic E. coli chaperone Skp is a trimer in solution: biophysical and preliminary crystallographic characterization , 2004, Biological chemistry.

[101]  Walter Neupert,et al.  Evolutionary conservation of biogenesis of β-barrel membrane proteins , 2003, Nature.

[102]  N. Pfanner,et al.  An Essential Role of Sam50 in the Protein Sorting and Assembly Machinery of the Mitochondrial Outer Membrane* , 2003, Journal of Biological Chemistry.

[103]  D. Mckay,et al.  The Periplasmic Molecular Chaperone Protein SurA Binds a Peptide Motif That Is Characteristic of Integral Outer Membrane Proteins* , 2003, Journal of Biological Chemistry.

[104]  J. Betton,et al.  Temperature effect on inclusion body formation and stress response in the periplasm of Escherichia coli , 2003, Molecular microbiology.

[105]  H. Nikaido Molecular Basis of Bacterial Outer Membrane Permeability Revisited , 2003, Microbiology and Molecular Biology Reviews.

[106]  A. Valencia,et al.  POTRA: a conserved domain in the FtsQ family and a class of beta-barrel outer membrane proteins. , 2003, Trends in biochemical sciences.

[107]  D. Homerova,et al.  New members of the Escherichia coli sigmaE regulon identified by a two-plasmid system. , 2003, FEMS microbiology letters.

[108]  J. Kleinschmidt,et al.  Membrane protein folding on the example of outer membrane protein A of Escherichia coli , 2003, Cellular and Molecular Life Sciences CMLS.

[109]  A. Krogh,et al.  Prediction of lipoprotein signal peptides in Gram‐negative bacteria , 2003, Protein science : a publication of the Protein Society.

[110]  T. Silhavy,et al.  Signal Detection and Target Gene Induction by the CpxRA Two-Component System , 2003, Journal of bacteriology.

[111]  R. Sauer,et al.  OMP Peptide Signals Initiate the Envelope-Stress Response by Activating DegS Protease via Relief of Inhibition Mediated by Its PDZ Domain , 2003, Cell.

[112]  O. Holst,et al.  Folding and Insertion of the Outer Membrane Protein OmpA Is Assisted by the Chaperone Skp and by Lipopolysaccharide* , 2003, The Journal of Biological Chemistry.

[113]  Michael Küchler,et al.  Characterization of the translocon of the outer envelope of chloroplasts , 2003, The Journal of cell biology.

[114]  J. Tommassen,et al.  Role of a Highly Conserved Bacterial Protein in Outer Membrane Protein Assembly , 2003, Science.

[115]  R. Misra,et al.  Protease-Deficient DegP Suppresses Lethal Effects of a Mutant OmpC Protein by Its Capture , 2003, Journal of bacteriology.

[116]  L. Tamm,et al.  Secondary and tertiary structure formation of the beta-barrel membrane protein OmpA is synchronized and depends on membrane thickness. , 2002, Journal of molecular biology.

[117]  D. Mckay,et al.  Crystallographic structure of SurA, a molecular chaperone that facilitates folding of outer membrane porins. , 2002, Structure.

[118]  I. Charles,et al.  PDZ Domains Facilitate Binding of High Temperature Requirement Protease A (HtrA) and Tail-specific Protease (Tsp) to Heterologous Substrates through Recognition of the Small Stable RNA A (ssrA)-encoded Peptide* , 2002, The Journal of Biological Chemistry.

[119]  T. Silhavy,et al.  Imp/OstA is required for cell envelope biogenesis in Escherichia coli , 2002, Molecular microbiology.

[120]  C. Gross,et al.  DegS and YaeL participate sequentially in the cleavage of RseA to activate the sigma(E)-dependent extracytoplasmic stress response. , 2002, Genes & development.

[121]  A. McGuire,et al.  Genome-wide Profiling of Promoter Recognition by the Two-component Response Regulator CpxR-P in Escherichia coli * , 2002, The Journal of Biological Chemistry.

[122]  E. Schleiff,et al.  A Toc75‐like protein import channel is abundant in chloroplasts , 2002, EMBO reports.

[123]  Massimo Paoli,et al.  Novel sequences propel familiar folds. , 2002, Structure.

[124]  Robert Huber,et al.  Crystal structure of DegP (HtrA) reveals a new protease-chaperone machine , 2002, Nature.

[125]  K. Otto,et al.  Surface sensing and adhesion of Escherichia coli controlled by the Cpx-signaling pathway , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[126]  M. Paetzel,et al.  Signal peptidases. , 2002, Chemical reviews.

[127]  C. Prigent-Combaret,et al.  Complex Regulatory Network Controls Initial Adhesion and Biofilm Formation in Escherichia coli via Regulation of thecsgD Gene , 2001, Journal of bacteriology.

[128]  L. Ruddock,et al.  Interaction of the periplasmic peptidylprolyl cis-trans isomerase SurA with model peptides. The N-terminal region of SurA id essential and sufficient for peptide binding. , 2001, The Journal of biological chemistry.

[129]  T. Silhavy,et al.  Genetic Evidence for Parallel Pathways of Chaperone Activity in the Periplasm of Escherichia coli , 2001, Journal of bacteriology.

[130]  G. Koningstein,et al.  The Early Interaction of the Outer Membrane Protein PhoE with the Periplasmic Chaperone Skp Occurs at the Cytoplasmic Membrane* , 2001, The Journal of Biological Chemistry.

[131]  D. Missiakas,et al.  Characterization of the Escherichia coliςE Regulon* , 2001, The Journal of Biological Chemistry.

[132]  J. Tommassen,et al.  Identification of phospholipids as new components that assist in the in vitro trimerization of a bacterial pore protein. , 2001, European journal of biochemistry.

[133]  C. Gross,et al.  The SurA periplasmic PPIase lacking its parvulin domains functions in vivo and has chaperone activity , 2001, The EMBO journal.

[134]  O. Adachi,et al.  Quinoproteins: structure, function, and biotechnological applications , 2001, Applied Microbiology and Biotechnology.

[135]  Zhaohui Xu,et al.  Crystal structure of the bacterial protein export chaperone SecB , 2000, Nature Structural Biology.

[136]  E. Willery,et al.  Novel Topological Features of FhaC, the Outer Membrane Transporter Involved in the Secretion of the Bordetella pertussis Filamentous Hemagglutinin* , 2000, The Journal of Biological Chemistry.

[137]  R. Misra,et al.  Overexpression of Protease-Deficient DegPS210ARescues the Lethal Phenotype of Escherichia coli OmpF Assembly Mutants in a degP Background , 2000, Journal of bacteriology.

[138]  T. Silhavy,et al.  Tethering of CpxP to the inner membrane prevents spheroplast induction of the Cpx envelope stress response , 2000, Molecular microbiology.

[139]  C. Whitfield,et al.  Translocation of group 1 capsular polysaccharide to the surface of Escherichia coli requires a multimeric complex in the outer membrane , 2000, The EMBO journal.

[140]  C. Chung,et al.  Selective degradation of unfolded proteins by the self-compartmentalizing HtrA protease, a periplasmic heat shock protein in Escherichia coli. , 1999, Journal of molecular biology.

[141]  David T. Jones,et al.  β Propellers: structural rigidity and functional diversity , 1999 .

[142]  F. Baneyx,et al.  Hyperosmotic shock induces the σ32 and σE stress regulons of Escherichia coli , 1999, Molecular microbiology.

[143]  P. Gounon,et al.  Testing the ‘+2 rule’ for lipoprotein sorting in the Escherichia coli cell envelope with a new genetic selection , 1999, Molecular microbiology.

[144]  G. Blatch,et al.  The tetratricopeptide repeat: a structural motif mediating protein-protein interactions. , 1999, BioEssays : news and reviews in molecular, cellular and developmental biology.

[145]  Sarah E. Ades,et al.  The Escherichia coli sigma(E)-dependent extracytoplasmic stress response is controlled by the regulated proteolysis of an anti-sigma factor. , 1999, Genes & development.

[146]  H. Karch,et al.  Transduction of Enteric Escherichia coli Isolates with a Derivative of Shiga Toxin 2-Encoding Bacteriophage φ3538 Isolated from Escherichia coli O157:H7 , 1999, Applied and Environmental Microbiology.

[147]  Matthias Müller,et al.  Skp, a Molecular Chaperone of Gram-negative Bacteria, Is Required for the Formation of Soluble Periplasmic Intermediates of Outer Membrane Proteins* , 1999, The Journal of Biological Chemistry.

[148]  J. Betton,et al.  PDZ domains determine the native oligomeric structure of the DegP (HtrA) protease , 1999, Molecular microbiology.

[149]  M. Ehrmann,et al.  A Temperature-Dependent Switch from Chaperone to Protease in a Widely Conserved Heat Shock Protein , 1999, Cell.

[150]  M. Roberts,et al.  The Alternative Sigma Factor, ςE, Is Critically Important for the Virulence of Salmonella typhimurium , 1999, Infection and Immunity.

[151]  L. Tamm,et al.  Outer membrane protein A of Escherichia coli inserts and folds into lipid bilayers by a concerted mechanism. , 1999, Biochemistry.

[152]  M. Marahiel,et al.  Peptidyl-prolyl cis-trans isomerases, a superfamily of ubiquitous folding catalysts , 1999, Cellular and Molecular Life Sciences CMLS.

[153]  M. Vasil,et al.  Pseudomonas aeruginosa fur Overlaps with a Gene Encoding a Novel Outer Membrane Lipoprotein, OmlA , 1999, Journal of bacteriology.

[154]  K. Keegstra,et al.  The evolutionary origin of the protein-translocating channel of chloroplastic envelope membranes: identification of a cyanobacterial homolog. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[155]  J. Tommassen,et al.  Affinity of the periplasmic chaperone Skp of Escherichia coli for phospholipids, lipopolysaccharides and non-native outer membrane proteins. Role of Skp in the biogenesis of outer membrane protein. , 1999, European journal of biochemistry.

[156]  T. Silhavy,et al.  Accumulation of the Enterobacterial Common Antigen Lipid II Biosynthetic Intermediate StimulatesdegP Transcription in Escherichia coli , 1998, Journal of bacteriology.

[157]  C. Georgopoulos,et al.  Function of Escherichia coli MsbA, an Essential ABC Family Transporter, in Lipid A and Phospholipid Biosynthesis* , 1998, The Journal of Biological Chemistry.

[158]  T. Silhavy,et al.  CpxP, a Stress-Combative Member of the Cpx Regulon , 1998, Journal of bacteriology.

[159]  T. Silhavy,et al.  The chaperone‐assisted membrane release and folding pathway is sensed by two signal transduction systems , 1997, The EMBO journal.

[160]  C. Gross,et al.  SigmaE is an essential sigma factor in Escherichia coli , 1997, Journal of bacteriology.

[161]  P. Postma,et al.  Escherichia coli is unable to produce pyrroloquinoline quinone (PQQ). , 1997, Microbiology.

[162]  C. Gross,et al.  The response to extracytoplasmic stress in Escherichia coli is controlled by partially overlapping pathways. , 1997, Genes & development.

[163]  J. Tommassen,et al.  Folding of a bacterial outer membrane protein during passage through the periplasm , 1997, The EMBO journal.

[164]  M. Kleerebezem,et al.  Role of the carboxy-terminal phenylalanine in the biogenesis of outer membrane protein PhoE of Escherichia coli K-12. , 1997, Journal of molecular biology.

[165]  T. Silhavy,et al.  The sigma(E) and the Cpx signal transduction systems control the synthesis of periplasmic protein-folding enzymes in Escherichia coli. , 1997, Genes & development.

[166]  J. Pogliano,et al.  Regulation of Escherichia coli cell envelope proteins involved in protein folding and degradation by the Cpx two-component system. , 1997, Genes & development.

[167]  C. Georgopoulos,et al.  Modulation of the Escherichia coliσE (RpoE) heat‐shock transcription‐factor activity by the RseA, RseB and RseC proteins , 1997, Molecular microbiology.

[168]  C. Gross,et al.  The σE‐mediated response to extracytoplasmic stress in Escherichia coli is transduced by RseA and RseB, two negative regulators of σE , 1997, Molecular microbiology.

[169]  W. Dowhan,et al.  The Cpx two-component signal transduction pathway is activated in Escherichia coli mutant strains lacking phosphatidylethanolamine , 1997, Journal of bacteriology.

[170]  C. Gross,et al.  SurA, a periplasmic protein with peptidyl-prolyl isomerase activity, participates in the assembly of outer membrane porins. , 1996, Genes & development.

[171]  L. Tamm,et al.  Folding intermediates of a beta-barrel membrane protein. Kinetic evidence for a multi-step membrane insertion mechanism. , 1996, Biochemistry.

[172]  R. Sauer,et al.  The DegP and DegQ periplasmic endoproteases of Escherichia coli: specificity for cleavage sites and substrate conformation , 1996, Journal of bacteriology.

[173]  S. Harrison,et al.  Peptide–Surface Association: The Case of PDZ and PTB Domains , 1996, Cell.

[174]  J. Betton,et al.  New components of protein folding in extracytoplasmic compartments of Escherichia coli SurA, FkpA and Skp/OmpH , 1996, Molecular microbiology.

[175]  C. Georgopoulos,et al.  Mutational analysis and properties of the msbA gene of Escherichia coli, coding for an essential ABC family transporter , 1996, Molecular microbiology.

[176]  J. Tommassen,et al.  In Vitro Insertion and Assembly of Outer Membrane Protein PhoE of Escherichia coli K-12 into the Outer Membrane , 1996, The Journal of Biological Chemistry.

[177]  M. Fussenegger,et al.  A novel peptidoglycan‐linked lipoprotein (ComL) that functions in natural transformation competence of Neisseria gonorrhoeae , 1996, Molecular microbiology.

[178]  R. Kolter,et al.  SurA assists the folding of Escherichia coli outer membrane proteins , 1996, Journal of bacteriology.

[179]  U. Henning,et al.  A periplasmic protein (Skp) of Escherichia coli selectively binds a class of outer membrane proteins. , 1996, Molecular microbiology.

[180]  A. Wawrzynów,et al.  Site-directed mutagenesis of the HtrA (DegP) serine protease, whose proteolytic activity is indispensable for Escherichia coli survival at elevated temperatures. , 1995, Gene.

[181]  S. Nakayama,et al.  Involvement of cpxA, a sensor of a two-component regulatory system, in the pH-dependent regulation of expression of Shigella sonnei virF gene , 1995, Journal of bacteriology.

[182]  W. B. Snyder,et al.  Overproduction of NlpE, a new outer membrane lipoprotein, suppresses the toxicity of periplasmic LacZ by activation of the Cpx signal transduction pathway , 1995, Journal of bacteriology.

[183]  K. Makino,et al.  The rpoE gene of Escherichia coli, which encodes sigma E, is essential for bacterial growth at high temperature , 1995, Journal of bacteriology.

[184]  H. Shinagawa,et al.  TherpoEGene ofEscherichia coli, Which Encodes s E , Is Essential for Bacterial Growth at High Temperature , 1995 .

[185]  Guy Plunkett,et al.  A new family of peptidyl-prolyl isomerases. , 1995, Trends in biochemical sciences.

[186]  A. Plückthun,et al.  Protein folding in the periplasm of Escherichia coli , 1994, Molecular microbiology.

[187]  G. Fischer,et al.  A novel peptidyl‐prolyl cisltrans isomerase from Escherichia coli , 1994, FEBS letters.

[188]  R. Misra,et al.  Assembly of LamB and OmpF in deep rough lipopolysaccharide mutants of Escherichia coli K-12 , 1994, Journal of bacteriology.

[189]  T. Donohue,et al.  The activity of sigma E, an Escherichia coli heat-inducible sigma-factor, is modulated by expression of outer membrane proteins. , 1993, Genes & development.

[190]  Sita D Gupta,et al.  Isolation and characterization of a temperature-sensitive mutant of Salmonella typhimurium defective in prolipoprotein modification. , 1993, The Journal of biological chemistry.

[191]  Sita D Gupta,et al.  Characterization of a temperature-sensitive mutant of Salmonella typhimurium defective in apolipoprotein N-acyltransferase. , 1993, The Journal of biological chemistry.

[192]  F. Jähnig,et al.  Refolding and oriented insertion of a membrane protein into a lipid bilayer. , 1992, Proceedings of the National Academy of Sciences of the United States of America.

[193]  M. Bayer,et al.  Zones of membrane adhesion in the cryofixed envelope of Escherichia coli. , 1991, Journal of structural biology.

[194]  T. Silhavy,et al.  A genetic approach for analyzing the pathway of LamB assembly into the outer membrane of Escherichia coli. , 1991, The Journal of biological chemistry.

[195]  J. Tommassen,et al.  Carboxy-terminal phenylalanine is essential for the correct assembly of a bacterial outer membrane protein. , 1991, Journal of molecular biology.

[196]  I. Charles,et al.  The role of a stress‐response protein in Salmonella typhimurium virulence , 1991, Molecular microbiology.

[197]  H. Nikaido,et al.  Lipopolysaccharide structure required for in vitro trimerization of Escherichia coli OmpF porin , 1991, Journal of bacteriology.

[198]  U. Henning,et al.  Role of lipopolysaccharide in assembly of Escherichia coli outer membrane proteins OmpA, OmpC, and OmpF , 1990, Journal of bacteriology.

[199]  R. Kolter,et al.  surA, an Escherichia coli gene essential for survival in stationary phase , 1990, Journal of bacteriology.

[200]  Henry C. Wu,et al.  Lipoproteins in bacteria , 1990, Journal of bioenergetics and biomembranes.

[201]  E. Kellenberger The ‘Bayer bridges’ confronted with results from improved electron microscopy methods , 1990, Molecular microbiology.

[202]  C. Georgopoulos,et al.  The HtrA (DegP) protein, essential for Escherichia coli survival at high temperatures, is an endopeptidase , 1990, Journal of bacteriology.

[203]  H. Nikaido,et al.  In vitro trimerization of OmpF porin secreted by spheroplasts of Escherichia coli. , 1990, Proceedings of the National Academy of Sciences of the United States of America.

[204]  J. Beckwith,et al.  Characterization of degP, a gene required for proteolysis in the cell envelope and essential for growth of Escherichia coli at high temperature , 1989, Journal of bacteriology.

[205]  C. Georgopoulos,et al.  Identification, characterization, and mapping of the Escherichia coli htrA gene, whose product is essential for bacterial growth only at elevated temperatures , 1989, Journal of bacteriology.

[206]  C. Georgopoulos,et al.  Sequence analysis and regulation of the htrA gene of Escherichia coli: a sigma 32-independent mechanism of heat-inducible transcription. , 1988, Nucleic acids research.

[207]  J. Bolla,et al.  The assembly of the major outer membrane protein OmpF of Escherichia coli depends on lipid synthesis. , 1988, The EMBO journal.

[208]  K. Kleppe,et al.  Cloning and sequencing of the gene for the DNA-binding 17 K protein of Escherichia coli , 1988 .

[209]  J. Beckwith,et al.  An Escherichia coli mutation preventing degradation of abnormal periplasmic proteins. , 1988, Proceedings of the National Academy of Sciences of the United States of America.

[210]  A. Holck,et al.  Cloning and sequencing of the gene for the DNA-binding 17K protein of Escherichia coli. , 1988, Gene.

[211]  Y. Stierhof,et al.  An outer membrane protein (OmpA) of Escherichia coli K-12 undergoes a conformational change during export. , 1986, The Journal of biological chemistry.

[212]  J. M. Pratt,et al.  Intermediates in the assembly of the TonA polypeptide into the outer membrane of Escherichia coli K12. , 1986, Journal of molecular biology.

[213]  S. Deb,et al.  Isolation of differentiated membrane domains from Escherichia coli and Salmonella typhimurium, including a fraction containing attachment sites between the inner and outer membranes and the murein skeleton of the cell envelope. , 1986, The Journal of biological chemistry.

[214]  A. Goldberg,et al.  Isolation and characterization of protease do from Escherichia coli, a large serine protease containing multiple subunits. , 1983, Archives of biochemistry and biophysics.

[215]  S. Inouye,et al.  Prolipoprotein signal peptidase of Escherichia coli requires a cysteine residue at the cleavage site. , 1983, The EMBO journal.

[216]  C. Lazdunski,et al.  Lipid-synthesis-dependent biosynthesis (or assembly) of major outer-membrane proteins of Escherichia coli. , 1981, European journal of biochemistry.

[217]  C. Galanos,et al.  A lipopolysaccharide-binding cell-surface protein from Salmonella minnesota. Isolation, partial characterization and occurrence in different Enterobacteriaceae. , 1979, European journal of biochemistry.

[218]  M. Kito,et al.  Distribution of phospholipid molecular species in outer and cytoplasmic membrane of Escherichia coli. , 1979, Journal of biochemistry.

[219]  H. Nikaido,et al.  Outer membrane of gram-negative bacteria. XVIII. Electron microscopic studies on porin insertion sites and growth of cell surface of Salmonella typhimurium , 1978, Journal of bacteriology.

[220]  H. Nikaido,et al.  Outer membrane of Salmonella typhimurium: accessibility of phospholipid head groups to phospholipase c and cyanogen bromide activated dextran in the external medium. , 1976, Biochemistry.

[221]  J E Gander,et al.  Mechanism of assembly of the outer membrane of Salmonella typhimurium. Isolation and characterization of cytoplasmic and outer membrane. , 1972, The Journal of biological chemistry.

[222]  M. Bayer Areas of adhesion between wall and membrane of Escherichia coli. , 1968, Journal of general microbiology.