Material data identification to model the single point incremental forming process

In this study, the Single Point Incremental Forming process (SPIF) is applied on a specific aluminium alloy used in the aerospace industry since this technique and material combine a low specific weight, high strength and stiffness properties and high strain levels. To be able to optimize the process, a model and its material parameters are required. It was noticed that a simple isotropic hardening model was not sufficient to provide an accurate tool force prediction [1]. Therefore an elasto-plastic law with a mixed isotropic-kinematic hardening is investigated. The inverse method coupled with the Finite Element (FE) code: “Lagamine” [2] is used to fit the material data of this complex law. In order to validate the model and the material data, a Line test and a Cone test are used.