Characterization of an influenza virus pseudotyped with Ebolavirus glycoprotein

[1]  G. Mattiuzzo,et al.  Comparison of platform technologies for assaying antibody to Ebola virus , 2017, Vaccine.

[2]  Liesbet Lagae,et al.  A novel approach to analyze lysosomal dysfunctions through subcellular proteomics and lipidomics: the case of NPC1 deficiency , 2017, Scientific Reports.

[3]  G. Gao,et al.  Selective inhibition of Ebola entry with selective estrogen receptor modulators by disrupting the endolysosomal calcium , 2017, Scientific Reports.

[4]  I. Wilson,et al.  Structural basis of influenza virus fusion inhibition by the antiviral drug Arbidol , 2016, Proceedings of the National Academy of Sciences.

[5]  D. Stuart,et al.  Toremifene interacts with and destabilizes the Ebola virus glycoprotein , 2016, Nature.

[6]  Steven F. Baker,et al.  Development and applications of single-cycle infectious influenza A virus (sciIAV). , 2016, Virus research.

[7]  D. Smee,et al.  The Synthetic Antiviral Drug Arbidol Inhibits Globally Prevalent Pathogenic Viruses , 2016, Journal of Virology.

[8]  G. Melikyan,et al.  Induction of Cell-Cell Fusion by Ebola Virus Glycoprotein: Low pH Is Not a Trigger , 2016, PLoS pathogens.

[9]  A. Galione,et al.  Ebolavirus Glycoprotein Directs Fusion through NPC1+ Endolysosomes , 2015, Journal of Virology.

[10]  Y. Sakurai,et al.  Two-pore channels control Ebola virus host cell entry and are drug targets for disease treatment , 2015, Science.

[11]  A. Gupta-Wright,et al.  Concerns about the off-licence use of amiodarone for Ebola , 2015, BMJ : British Medical Journal.

[12]  P. Rollin,et al.  Tissue and cellular tropism, pathology and pathogenesis of Ebola and Marburg viruses , 2015, The Journal of pathology.

[13]  A. Lefor,et al.  Favipiravir: A New Medication for the Ebola Virus Disease Pandemic , 2014, Disaster Medicine and Public Health Preparedness.

[14]  E. De Clercq,et al.  Ebola virus (EBOV) infection: Therapeutic strategies , 2014, Biochemical Pharmacology.

[15]  F. Turone Doctors trial amiodarone for Ebola in Sierra Leone , 2014, BMJ : British Medical Journal.

[16]  H. Svanström,et al.  Use of clarithromycin and roxithromycin and risk of cardiac death: cohort study , 2014, BMJ : British Medical Journal.

[17]  D. Smee,et al.  Favipiravir (T-705), a novel viral RNA polymerase inhibitor. , 2013, Antiviral research.

[18]  P. Vidalain,et al.  Inhibition of Pyrimidine Biosynthesis Pathway Suppresses Viral Growth through Innate Immunity , 2013, PLoS pathogens.

[19]  Kathryn L. Schornberg,et al.  FDA-Approved Selective Estrogen Receptor Modulators Inhibit Ebola Virus Infection , 2013, Science Translational Medicine.

[20]  Kathryn L. Schornberg,et al.  Multiple Cationic Amphiphiles Induce a Niemann-Pick C Phenotype and Inhibit Ebola Virus Entry and Infection , 2013, PloS one.

[21]  J. Krise,et al.  Cationic amphiphilic drugs cause a marked expansion of apparent lysosomal volume: implications for an intracellular distribution-based drug interaction. , 2012, Molecular pharmaceutics.

[22]  Michael J. Keiser,et al.  Large Scale Prediction and Testing of Drug Activity on Side-Effect Targets , 2012, Nature.

[23]  J. Dye,et al.  Ebola virus entry requires the host‐programmed recognition of an intracellular receptor , 2012, The EMBO journal.

[24]  E. Fodor,et al.  Pseudotyped Influenza A Virus as a Vaccine for the Induction of Heterotypic Immunity , 2012, Journal of Virology.

[25]  S. Pöhlmann,et al.  Cathepsins B and L activate Ebola but not Marburg virus glycoproteins for efficient entry into cell lines and macrophages independent of TMPRSS2 expression , 2012, Virology.

[26]  J. Kornhuber,et al.  Identification of Novel Functional Inhibitors of Acid Sphingomyelinase , 2011, PloS one.

[27]  V. Simon,et al.  Broad-spectrum antiviral that interferes with de novo pyrimidine biosynthesis , 2011, Proceedings of the National Academy of Sciences.

[28]  R. Lamb,et al.  Influenza virus assembly and budding. , 2011, Virology.

[29]  H. Feldmann,et al.  Ebola haemorrhagic fever , 2011, The Lancet.

[30]  R. Ray,et al.  Identification of a Small-Molecule Entry Inhibitor for Filoviruses , 2011, Journal of Virology.

[31]  B. Meier,et al.  Mechanism of Inhibition of Enveloped Virus Membrane Fusion by the Antiviral Drug Arbidol , 2011, PloS one.

[32]  Jens H. Kuhn,et al.  Proposal for a revised taxonomy of the family Filoviridae: classification, names of taxa and viruses, and virus abbreviations , 2010, Archives of Virology.

[33]  A. Kolokoltsov,et al.  Cellular Entry of Ebola Virus Involves Uptake by a Macropinocytosis-Like Mechanism and Subsequent Trafficking through Early and Late Endosomes , 2010, PLoS pathogens.

[34]  Gabriele Neumann,et al.  Ebolavirus Is Internalized into Host Cells via Macropinocytosis in a Viral Glycoprotein-Dependent Manner , 2010, PLoS pathogens.

[35]  J. Kornhuber,et al.  Lipophilic cationic drugs increase the permeability of lysosomal membranes in a cell culture system , 2010, Journal of cellular physiology.

[36]  D. Smee,et al.  Triple Combination of Amantadine, Ribavirin, and Oseltamivir Is Highly Active and Synergistic against Drug Resistant Influenza Virus Strains In Vitro , 2010, PloS one.

[37]  John Steel,et al.  Hemagglutinin-Pseudotyped Green Fluorescent Protein-Expressing Influenza Viruses for the Detection of Influenza Virus Neutralizing Antibodies , 2009, Journal of Virology.

[38]  E. Saphire,et al.  Ebolavirus glycoprotein structure and mechanism of entry. , 2009, Future virology.

[39]  R. Russell,et al.  Characteristics of arbidol-resistant mutants of influenza virus: implications for the mechanism of anti-influenza action of arbidol. , 2009, Antiviral research.

[40]  P. Bates,et al.  Requirements for cell rounding and surface protein down-regulation by Ebola virus glycoprotein. , 2009, Virology.

[41]  D. Burton,et al.  Structure of the Ebola virus glycoprotein bound to an antibody from a human survivor , 2008, Nature.

[42]  J. Kornhuber,et al.  Identification of new functional inhibitors of acid sphingomyelinase using a structure-property-activity relation model. , 2008, Journal of medicinal chemistry.

[43]  X. Wan,et al.  hERG channel trafficking: novel targets in drug-induced long QT syndrome. , 2007, Biochemical Society transactions.

[44]  Lieping Chen,et al.  How Ebola and Marburg viruses battle the immune system , 2007, Nature Reviews Immunology.

[45]  R. Lamb,et al.  Influenza Virus Hemagglutinin and Neuraminidase, but Not the Matrix Protein, Are Required for Assembly and Budding of Plasmid-Derived Virus-Like Particles , 2007, Journal of Virology.

[46]  V. Volchkov,et al.  Ebola virus glycoprotein GP is not cytotoxic when expressed constitutively at a moderate level. , 2006, The Journal of general virology.

[47]  S. Whelan,et al.  Endosomal Proteolysis of the Ebola Virus Glycoprotein Is Necessary for Infection , 2005, Science.

[48]  H. Klenk,et al.  Overexpression of the α-2,6-Sialyltransferase in MDCK Cells Increases Influenza Virus Sensitivity to Neuraminidase Inhibitors , 2003, Journal of Virology.

[49]  L. Adinolfi,et al.  Effects of alpha interferon induction plus ribavirin with or without amantadine in the treatment of interferon non-responsive chronic hepatitis C: a randomised trial , 2003, Gut.

[50]  E. Pérez-Payá,et al.  Calcium‐dependent conformational changes of membrane‐bound Ebola fusion peptide drive vesicle fusion , 2003, FEBS letters.

[51]  V. Volchkov,et al.  Recovery of Infectious Ebola Virus from Complementary DNA: RNA Editing of the GP Gene and Viral Cytotoxicity , 2001, Science.

[52]  E. Nabel,et al.  Identification of the Ebola virus glycoprotein as the main viral determinant of vascular cell cytotoxicity and injury , 2000, Nature Medicine.

[53]  Andrew Pekosz,et al.  Influenza Virus Assembly and Lipid Raft Microdomains: a Role for the Cytoplasmic Tails of the Spike Glycoproteins , 2000, Journal of Virology.

[54]  R. Lamb,et al.  The cytoplasmic tails of the influenza virus spike glycoproteins are required for normal genome packaging. , 2000, Virology.

[55]  D. Burton,et al.  Ebola Virus Can Be Effectively Neutralized by Antibody Produced in Natural Human Infection , 1999, Journal of Virology.

[56]  M. Roth,et al.  Amino acid sequence requirements of the transmembrane and cytoplasmic domains of influenza virus hemagglutinin for viable membrane fusion. , 1999, Molecular biology of the cell.

[57]  Keiji Fukuda,et al.  Detection of Antibody to Avian Influenza A (H5N1) Virus in Human Serum by Using a Combination of Serologic Assays , 1999, Journal of Clinical Microbiology.

[58]  P. Bates,et al.  Characterization of Ebola Virus Entry by Using Pseudotyped Viruses: Identification of Receptor-Deficient Cell Lines , 1998, Journal of Virology.

[59]  A. Sanchez,et al.  A system for functional analysis of Ebola virus glycoprotein. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[60]  R. Lamb,et al.  Influenza virus hemagglutinin and neuraminidase cytoplasmic tails control particle shape , 1997, The EMBO journal.

[61]  R. Lamb,et al.  The influenza virus hemagglutinin cytoplasmic tail is not essential for virus assembly or infectivity. , 1994, The EMBO journal.

[62]  G. Lloyd,et al.  A case of Ebola virus infection. , 1977, British medical journal.

[63]  L. Philipson,et al.  Inhibition of Influenza Virus Ribonucleic Acid Polymerase by Ribavirin Triphosphate , 1977, Antimicrobial Agents and Chemotherapy.

[64]  P. Shinn,et al.  Synergistic drug combination effectively blocks Ebola virus infection , 2017, Antiviral research.

[65]  Kathryn L. Parsley,et al.  High-level transduction and gene expression in hematopoietic repopulating cells using a human immunodeficiency [correction of imunodeficiency] virus type 1-based lentiviral vector containing an internal spleen focus forming virus promoter. , 2002, Human gene therapy.

[66]  J. Clardy,et al.  Structures of human dihydroorotate dehydrogenase in complex with antiproliferative agents. , 2000, Structure.