Routing in polygonal domains

Abstract We consider the problem of routing a data packet through the visibility graph of a polygonal domain P with n vertices and h holes. We may preprocess P to obtain a label and a routing table for each vertex of P. Then, we must be able to route a data packet between any two vertices p and q of P, where each step must use only the label of the target node q and the routing table of the current node. For any fixed e > 0 , we present a routing scheme that always achieves a routing path whose length exceeds the shortest path by a factor of at most 1 + e . The labels have O ( log ⁡ n ) bits, and the routing tables are of size O ( ( e − 1 + h ) log ⁡ n ) . The preprocessing time is O ( n 2 log ⁡ n ) . It can be improved to O ( n 2 ) for simple polygons.

[1]  Shiri Chechik Compact routing schemes with improved stretch , 2013, PODC '13.

[2]  Joseph S. B. Mitchell Shortest paths among obstacles in the plane , 1996, Int. J. Comput. Geom. Appl..

[3]  Mark H. Overmars,et al.  New methods for computing visibility graphs , 1988, SCG '88.

[4]  Prosenjit Bose,et al.  The θ5-graph is a spanner , 2015, Comput. Geom..

[5]  Mikkel Thorup,et al.  Compact routing schemes , 2001, SPAA '01.

[6]  Emo WELZL,et al.  Constructing the Visibility Graph for n-Line Segments in O(n²) Time , 1985, Inf. Process. Lett..

[7]  Mikkel Thorup Compact oracles for reachability and approximate distances in planar digraphs , 2004, JACM.

[8]  Nicola Santoro,et al.  Labelling and Implicit Routing in Networks , 1985, Computer/law journal.

[9]  James A. Storer,et al.  Shortest paths in the plane with polygonal obstacles , 1994, JACM.

[10]  Mikkel Thorup,et al.  Approximate distance oracles , 2005, J. ACM.

[11]  Ittai Abraham,et al.  On Approximate Distance Labels and Routing Schemes with Affine Stretch , 2011, DISC.

[12]  Yang Xiang,et al.  Compact and low delay routing labeling scheme for Unit Disk Graphs , 2012, Comput. Geom..

[13]  Michiel H. M. Smid,et al.  On plane geometric spanners: A survey and open problems , 2013, Comput. Geom..

[14]  Joseph S. B. Mitchell,et al.  A new algorithm for shortest paths among obstacles in the plane , 1991, Annals of Mathematics and Artificial Intelligence.

[15]  Subhash Suri,et al.  An Optimal Algorithm for Euclidean Shortest Paths in the Plane , 1999, SIAM J. Comput..

[16]  Prosenjit Bose,et al.  Optimal local routing on Delaunay triangulations defined by empty equilateral triangles , 2015, SIAM J. Comput..

[17]  Baruch Awerbuch,et al.  Improved Routing Strategies with Succinct Tables , 1990, J. Algorithms.

[18]  Ivan Stojmenovic,et al.  Position Based Routing Algorithms for Ad Hoc Networks: A Taxonomy , 2004 .

[19]  Micha Sharir,et al.  On Shortest Paths in Polyhedral Spaces , 1986, SIAM J. Comput..

[20]  Joseph S. B. Mitchell,et al.  An Efficient Algorithm for Euclidean Shortest Paths Among Polygonal Obstacles in the Plane , 1997, Discret. Comput. Geom..

[21]  Kenneth L. Clarkson,et al.  Approximation algorithms for shortest path motion planning , 1987, STOC.

[22]  Haim Kaplan,et al.  Routing in Unit Disk Graphs , 2015, Algorithmica.

[23]  Prosenjit Bose,et al.  Routing on the Visibility Graph , 2017, ISAAC.

[24]  Andrew Chi-Chih Yao,et al.  On Constructing Minimum Spanning Trees in k-Dimensional Spaces and Related Problems , 1977, SIAM J. Comput..

[25]  David Peleg,et al.  Compact routing schemes with low stretch factor , 2003, J. Algorithms.

[26]  Mirela Damian,et al.  Yao Graphs Span Theta Graphs , 2012, Discret. Math. Algorithms Appl..

[27]  Lenore Cowen,et al.  Compact routing with minimum stretch , 1999, SODA '99.

[28]  Prosenjit Bose,et al.  Competitive Local Routing with Constraints , 2015, ISAAC.

[29]  Liam Roditty,et al.  Close to linear space routing schemes , 2015, Distributed Computing.

[30]  Andréa W. Richa,et al.  Optimal scale-free compact routing schemes in networks of low doubling dimension , 2007, SODA '07.

[31]  Prosenjit Bose,et al.  Constrained Routing Between Non-Visible Vertices , 2017, COCOON.

[32]  Giri Narasimhan,et al.  Geometric spanner networks , 2007 .

[33]  Eli Upfal,et al.  A trade-off between space and efficiency for routing tables , 1989, JACM.

[34]  Prosenjit Bose,et al.  Competitive Online Routing in Geometric Graphs , 2004, SIROCCO.

[35]  Michiel H. M. Smid,et al.  π/2-Angle Yao Graphs are Spanners , 2012, Int. J. Comput. Geom. Appl..

[36]  Leonidas J. Guibas,et al.  Visibility of disjoint polygons , 2005, Algorithmica.

[37]  Pierre Fraigniaud,et al.  Routing in Trees , 2001, ICALP.

[38]  Prosenjit Bose,et al.  Towards tight bounds on theta-graphs: More is not always better , 2016, Theor. Comput. Sci..

[39]  Reuven Bar-Yehuda,et al.  Triangulating disjoint Jordan chains , 1994, Int. J. Comput. Geom. Appl..

[40]  Liam Roditty,et al.  New Routing Techniques and their Applications , 2014, PODC.

[41]  Mirela Damian,et al.  Improved bounds on the stretch factor of Y4 , 2017, Comput. Geom..

[42]  S. N. Maheshwari,et al.  Efficient algorithms for Euclidean shortest path and visibility problems with polygonal obstacles , 1988, SCG '88.

[43]  Leonidas J. Guibas,et al.  Linear-time algorithms for visibility and shortest path problems inside triangulated simple polygons , 1987, Algorithmica.

[44]  Prosenjit Bose,et al.  On the Stretch Factor of the Theta-4 Graph , 2013, WADS.