Comparison of Classification Analysis Using LASSO and Principal Component Analysis for Kidney Cancer

[1]  A. Owen,et al.  A Bayesian framework for combining heterogeneous data sources for gene function prediction (in Saccharomyces cerevisiae) , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[2]  R. Tibshirani Regression Shrinkage and Selection via the Lasso , 1996 .

[3]  Cheolyong Park,et al.  Simple principal component analysis using Lasso , 2013 .

[4]  Dimitrios I. Fotiadis,et al.  Machine learning applications in cancer prognosis and prediction , 2014, Computational and structural biotechnology journal.

[5]  Fabio Massimo Zanzotto,et al.  Breast Cancer Prognosis Using a Machine Learning Approach , 2019, Cancers.

[6]  L. Wasserman,et al.  HIGH DIMENSIONAL VARIABLE SELECTION. , 2007, Annals of statistics.

[7]  B. Frey,et al.  The human splicing code reveals new insights into the genetic determinants of disease , 2015, Science.

[8]  Andrew H. Beck,et al.  Diagnostic Assessment of Deep Learning Algorithms for Detection of Lymph Node Metastases in Women With Breast Cancer , 2017, JAMA.

[9]  Hanqi Zhuang,et al.  A Machine Learning Approach for the Classification of Kidney Cancer Subtypes Using miRNA Genome Data , 2018, Applied Sciences.

[10]  H. Stefánsson,et al.  Genetics of gene expression and its effect on disease , 2008, Nature.

[11]  David Fournier,et al.  Principal components analysis: theory and application to gene expression data analysis , 2018 .

[12]  Chenlei Leng,et al.  Shrinkage tuning parameter selection with a diverging number of parameters , 2008 .

[13]  R. Tibshirani The Lasso Problem and Uniqueness , 2012, 1206.0313.