Spatiotemporal System Identification With Continuous Spatial Maps and Sparse Estimation

We present a framework for the identification of spatiotemporal linear dynamical systems. We use a state-space model representation that has the following attributes: 1) the number of spatial observation locations are decoupled from the model order; 2) the model allows for spatial heterogeneity; 3) the model representation is continuous over space; and 4) the model parameters can be identified in a simple and sparse estimation procedure. The model identification procedure we propose has four steps: 1) decomposition of the continuous spatial field using a finite set of basis functions where spatial frequency analysis is used to determine basis function width and spacing, such that the main spatial frequency contents of the underlying field can be captured; 2) initialization of states in closed form; 3) initialization of state-transition and input matrix model parameters using sparse regression-the least absolute shrinkage and selection operator method; and 4) joint state and parameter estimation using an iterative Kalman-filter/sparse-regression algorithm. To investigate the performance of the proposed algorithm we use data generated by the Kuramoto model of spatiotemporal cortical dynamics. The identification algorithm performs successfully, predicting the spatiotemporal field with high accuracy, whilst the sparse regression leads to a compact model.

[1]  Visakan Kadirkamanathan,et al.  Data-Driven Spatio-Temporal Modeling Using the Integro-Difference Equation , 2009, IEEE Transactions on Signal Processing.

[2]  Andreas Daffertshofer,et al.  Generative Models of Cortical Oscillations: Neurobiological Implications of the Kuramoto Model , 2010, Front. Hum. Neurosci..

[3]  R. Tibshirani Regression Shrinkage and Selection via the Lasso , 1996 .

[4]  Noel A Cressie,et al.  Statistics for Spatio-Temporal Data , 2011 .

[5]  R. Stephenson A and V , 1962, The British journal of ophthalmology.

[6]  Volker Roth,et al.  The generalized LASSO , 2004, IEEE Transactions on Neural Networks.

[7]  Dongbing Gu,et al.  Spatial Gaussian Process Regression With Mobile Sensor Networks , 2012, IEEE Transactions on Neural Networks and Learning Systems.

[8]  Trevor Hastie,et al.  The Elements of Statistical Learning , 2001 .

[9]  Lennart Ljung,et al.  Theory and Practice of Recursive Identification , 1983 .

[10]  Christopher K. Wikle,et al.  Seasonal variation of upper tropospheric and lower stratospheric equatorial waves over the tropical Pacific , 1997 .

[11]  Visakan Kadirkamanathan,et al.  Spatiotemporal multi-resolution approximation of the Amari type neural field model , 2013, NeuroImage.

[12]  Christopher K. Wikle,et al.  Hierarchical Bayesian Models for Predicting The Spread of Ecological Processes , 2003 .

[13]  Juan P. Torres,et al.  The Kuramoto model: A simple paradigm for synchronization phenomena , 2005 .

[14]  Robert Tibshirani,et al.  The Elements of Statistical Learning: Data Mining, Inference, and Prediction, 2nd Edition , 2001, Springer Series in Statistics.

[15]  Aaas News,et al.  Book Reviews , 1893, Buffalo Medical and Surgical Journal.

[16]  Yoshiki Kuramoto,et al.  Chemical Oscillations, Waves, and Turbulence , 1984, Springer Series in Synergetics.

[17]  C. Wikle A kernel-based spectral model for non-Gaussian spatio-temporal processes , 2002 .

[18]  Bradley P. Carlin,et al.  Hierarchical Spatio-Temporal Mapping of Disease Rates , 1997 .

[19]  Visakan Kadirkamanathan,et al.  Estimation and Model Selection for an IDE-Based Spatio-Temporal Model , 2009, IEEE Transactions on Signal Processing.

[20]  Christopher K. Wikle A Kernel-Based Spectral Approach for Spatiotemporal Dynamic Models , 2002 .

[21]  Tong Zhou,et al.  Parameter identification for nonlinear state-space models of a biological network via linearization and robust state estimation , 2013, Proceedings of the 32nd Chinese Control Conference.

[22]  D R Freestone,et al.  A data-driven framework for neural field modeling , 2011, NeuroImage.

[23]  Roger M. Goodall,et al.  Estimation of parameters in a linear state space model using a Rao-Blackwellised particle filter , 2004 .

[24]  David S. Stoffer,et al.  Estimation and Identification of Space-Time ARMAX Models in the Presence of Missing Data , 1986 .

[25]  Monika Sharma,et al.  Chemical oscillations , 2006 .

[26]  R. Tibshirani,et al.  Least angle regression , 2004, math/0406456.

[27]  Hagai Attias,et al.  An Expectation–Maximization Method for Spatio–Temporal Blind Source Separation Using an AR-MOG Source Model , 2008, IEEE Transactions on Neural Networks.

[28]  P. Pfeifer,et al.  Independence and sphericity tests for the residuals of space-time arma models , 1980 .

[29]  Robert M. Sanner,et al.  Gaussian Networks for Direct Adaptive Control , 1991, 1991 American Control Conference.

[30]  M. A. Chadwick,et al.  An iterative Kalman smoother/least-squares algorithm for the identification of delta-ARX models , 2010, Int. J. Syst. Sci..

[31]  Trevor Hastie,et al.  Regularization Paths for Generalized Linear Models via Coordinate Descent. , 2010, Journal of statistical software.

[32]  Gaël Varoquaux,et al.  Scikit-learn: Machine Learning in Python , 2011, J. Mach. Learn. Res..

[33]  Jonathan R. Stroud,et al.  Dynamic models for spatiotemporal data , 2001 .

[34]  D. Ruppert The Elements of Statistical Learning: Data Mining, Inference, and Prediction , 2004 .

[35]  Ali H. Sayed,et al.  Linear Estimation (Information and System Sciences Series) , 2000 .

[36]  David Middleton,et al.  Sampling and Reconstruction of Wave-Number-Limited Functions in N-Dimensional Euclidean Spaces , 1962, Inf. Control..