Logical aspects of Cayley-graphs: the group case

Abstract We prove that a finitely generated group is context-free whenever its Cayley-graph has a decidable monadic second-order theory. Hence, by the seminal work of Muller and Schupp, our result gives a logical characterization of context-free groups and also proves a conjecture of Schupp. To derive this result, we investigate general graphs and show that a graph of bounded degree with a high degree of symmetry is context-free whenever its monadic second-order theory is decidable. Further, it is shown that the word problem of a finitely generated group is decidable if and only if the first-order theory of its Cayley-graph is decidable.

[1]  Géraud Sénizergues An Effective Version of Stallings' Theorem in the Case of Context-Free Groups , 1993, ICALP.

[2]  Joost Engelfriet,et al.  Domino Treewidth , 1997, J. Algorithms.

[3]  Z. Sela,et al.  Canonical representatives and equations in hyperbolic groups , 1995 .

[4]  William W. Boone,et al.  An algebraic characterization of groups with soluble word problem , 1974, Journal of the Australian Mathematical Society.

[5]  M. J. Dunwoody The accessibility of finitely presented groups , 1985 .

[6]  Thomas Herbst,et al.  Group Presentations, Formal Languages and Characterizations of One-Counter Groups , 1993, Theor. Comput. Sci..

[7]  Bruno Courcelle,et al.  The Expression of Graph Properties and Graph Transformations in Monadic Second-Order Logic , 1997, Handbook of Graph Grammars.

[8]  Didier Caucal,et al.  On infinite transition graphs having a decidable monadic theory , 1996, Theor. Comput. Sci..

[9]  Carsten Thomassen,et al.  Vertex-Transitive Graphs and Accessibility , 1993, J. Comb. Theory B.

[10]  Volker Diekert,et al.  Existential and Positive Theories of Equations in Graph Products , 2002, STACS.

[11]  Journal of the Association for Computing Machinery , 1961, Nature.

[12]  John Stallings,et al.  Group Theory and Three-dimensional Manifolds , 1971 .

[13]  G. Higman Subgroups of finitely presented groups , 1961, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[14]  Wolfgang Woess,et al.  Graphs and groups with tree-like properties , 1989, J. Comb. Theory, Ser. B.

[15]  Albert R. Meyer,et al.  WEAK MONADIC SECOND ORDER THEORY OF SUCCESSOR IS NOT ELEMENTARY-RECURSIVE , 1973 .

[16]  Paul E. Schupp Groups and graphs , 1979 .

[17]  Paul E. Schupp Arrays, Automata and Groups: Some Interconnections , 1986, Automata Networks.

[18]  Michael A. Taitslin,et al.  Deterministic Dynamic Logic is Strictly Weaker than Dynamic Logic , 1983, Inf. Control..

[19]  M. Rabin Decidability of second-order theories and automata on infinite trees , 1968 .

[20]  Didier Caucal On Infinite Terms Having a Decidable Monadic Theory , 2002, MFCS.

[21]  Géraud Sénizergues,et al.  Semi-Groups Acting on Context-Free Graphs , 1996, ICALP.

[22]  Calvin C. Elgot,et al.  Decidability and undecidability of extensions of second (first) order theory of (generalized) successor , 1966, Journal of Symbolic Logic.

[23]  Y. Gurevich On Finite Model Theory , 1990 .

[24]  M. J. Dunwoody Cutting up graphs , 1982, Comb..

[25]  Roger C. Lyndon,et al.  On Dehn's algorithm , 1966 .

[26]  Hermann Wagner,et al.  Auf der Heide , 2022 .

[27]  R. G. Möller Groups acting on graphs , 1991 .

[28]  Markus Lohrey,et al.  Decidable Theories of Cayley-Graphs , 2003, STACS.

[29]  Laurent Pélecq,et al.  Automorphism Groups of Context-Free Graphs , 1996, Theor. Comput. Sci..

[30]  Achim Blumensath Prefix-Recognisable Graphs and Monadic Second-Order Logic , 2001 .

[31]  Detlef Seese,et al.  Tree-partite graphs and the complexity of algorithms , 1985, FCT.

[32]  Wolfgang Thomas,et al.  Ehrenfeucht Games, the Composition Method, and the Monadic Theory of Ordinal Words , 1997, Structures in Logic and Computer Science.

[33]  W. Magnus,et al.  Combinatorial Group Theory: COMBINATORIAL GROUP THEORY , 1967 .

[34]  David E. Muller,et al.  Groups, the Theory of Ends, and Context-Free Languages , 1983, J. Comput. Syst. Sci..

[35]  M. Leucker Prefix-recognizable graphs and monadic second order logic , 2001 .

[36]  Volker Diekert,et al.  A Note on The Existential Theory of Equations in Plain Groups , 2002, Int. J. Algebra Comput..

[37]  M. Dehn,et al.  Über die Topologie des dreidimensionalen Raumes , 1910 .

[38]  Bruno Courcelle,et al.  Upper bounds to the clique width of graphs , 2000, Discret. Appl. Math..

[39]  A. V. Anisimov Group languages , 1971 .

[40]  Nellie Clarke Brown Trees , 1896, Savage Dreams.

[41]  Bogdan Oporowski,et al.  Some results on tree decomposition of graphs , 1995, J. Graph Theory.

[42]  Reinhard Diestel,et al.  Graph Theory , 1997 .

[43]  S. Shelah The monadic theory of order , 1975, 2305.00968.

[44]  G. Makanin DECIDABILITY OF THE UNIVERSAL AND POSITIVE THEORIES OF A FREE GROUP , 1985 .

[45]  Robert Henry Haring-Smith Groups and simple languages , 1983 .

[46]  Didier Caucal,et al.  On the Regular Structure of Prefix Rewriting , 1990, Theor. Comput. Sci..

[47]  Charles F. Miller,et al.  Combinatorial Group Theory , 2002 .

[48]  Carsten Thomassen,et al.  Configurations in Graphs of Large Minimum Degree, Connectivity, or Chromatic Number , 1989 .

[49]  L. Babai Automorphism groups, isomorphism, reconstruction , 1996 .

[50]  Bruno Courcelle,et al.  The Monadic Second order Logic of Graphs VI: on Several Representations of Graphs By Relational Structures , 1994, Discret. Appl. Math..

[51]  Wolfgang Thomas,et al.  Elements of an automata theory over partial orders , 1997, Partial Order Methods in Verification.

[52]  Detlef Seese,et al.  The Structure of Models of Decidable Monadic Theories of Graphs , 1991, Ann. Pure Appl. Log..

[53]  Paul D. Seymour,et al.  Graph Minors. II. Algorithmic Aspects of Tree-Width , 1986, J. Algorithms.

[54]  David E. Muller,et al.  The Theory of Ends, Pushdown Automata, and Second-Order Logic , 1985, Theor. Comput. Sci..

[55]  J. Ferrante,et al.  The computational complexity of logical theories , 1979 .

[56]  B. A. Reed,et al.  Algorithmic Aspects of Tree Width , 2003 .

[57]  Hartmut Ehrig,et al.  Handbook of graph grammars and computing by graph transformation: vol. 3: concurrency, parallelism, and distribution , 1999 .

[58]  Hans L. Bodlaender,et al.  A note on domino treewidth , 1999, Discret. Math. Theor. Comput. Sci..

[59]  Chen C. Chang,et al.  Model Theory: Third Edition (Dover Books On Mathematics) By C.C. Chang;H. Jerome Keisler;Mathematics , 1966 .

[60]  R. Graham,et al.  Handbook of Combinatorics , 1995 .

[61]  Bruno Courcelle,et al.  The monadic second-order logic of graphs, II: Infinite graphs of bounded width , 1988, Mathematical systems theory.

[62]  G. Makanin EQUATIONS IN A FREE GROUP , 1983 .