Probing the bonding and electronic structure of single atom dopants in graphene with electron energy loss spectroscopy.

A combination of scanning transmission electron microscopy, electron energy loss spectroscopy, and ab initio calculations reveal striking electronic structure differences between two distinct single substitutional Si defect geometries in graphene. Optimised acquisition conditions allow for exceptional signal-to-noise levels in the spectroscopic data. The near-edge fine structure can be compared with great accuracy to simulations and reveal either an sp(3)-like configuration for a trivalent Si or a more complicated hybridized structure for a tetravalent Si impurity.

[1]  H. Rose,et al.  Conditions and reasons for incoherent imaging in STEM , 1996 .

[2]  C. G. Broyden The Convergence of a Class of Double-rank Minimization Algorithms 1. General Considerations , 1970 .

[3]  D. Wales,et al.  Theoretical studies of icosahedral C60 and some related species , 1986 .

[4]  D. Goldfarb A family of variable-metric methods derived by variational means , 1970 .

[5]  S. V. Morozov,et al.  Tunable metal-insulator transition in double-layer graphene heterostructures , 2011, 1107.0115.

[6]  Q. Ramasse,et al.  Gentle STEM of Single Atoms: Low keV Imaging and Analysis at Ultimate Detection Limits , 2012 .

[7]  S. Louie,et al.  Subangstrom edge relaxations probed by electron microscopy in hexagonal boron nitride. , 2012, Physical review letters.

[8]  M. Schubert,et al.  Infrared optical properties of mixed-phase thin films studied by spectroscopic ellipsometry using boron nitride as an example , 1997 .

[9]  A. Krasheninnikov,et al.  Structural defects in graphene. , 2011, ACS nano.

[10]  A. Reina,et al.  Large area, few-layer graphene films on arbitrary substrates by chemical vapor deposition. , 2009, Nano letters.

[11]  D. Shanno Conditioning of Quasi-Newton Methods for Function Minimization , 1970 .

[12]  Matt Probert,et al.  First principles methods using CASTEP , 2005 .

[13]  H. Sawada,et al.  Visualizing and identifying single atoms using electron energy-loss spectroscopy with low accelerating voltage. , 2009, Nature chemistry.

[14]  K. Suenaga,et al.  Atom-by-atom spectroscopy at graphene edge , 2010, Nature.

[15]  F. Banhart,et al.  Irradiation effects in carbon nanostructures , 1999 .

[16]  A. Gunawan,et al.  Imaging "invisible" dopant atoms in semiconductor nanocrystals. , 2011, Nano letters.

[17]  C. G. Broyden The Convergence of a Class of Double-rank Minimization Algorithms 2. The New Algorithm , 1970 .

[18]  S. Pennycook,et al.  Direct determination of the chemical bonding of individual impurities in graphene. , 2012, Physical review letters.

[19]  Jannik C. Meyer,et al.  From point defects in graphene to two-dimensional amorphous carbon. , 2011, Physical review letters.

[20]  Jagjit Nanda,et al.  Atomically localized plasmon enhancement in monolayer graphene. , 2012, Nature nanotechnology.

[21]  F. Salvat,et al.  Cross sections for ionization of K, L and M shells of atoms by impact of electrons and positrons with energies up to 1 GeV: Analytical formulas , 2009 .

[22]  Jannik C. Meyer,et al.  Accurate measurement of electron beam induced displacement cross sections for single-layer graphene. , 2012, Physical review letters.

[23]  V. Nicolosi,et al.  Gentle STEM: ADF imaging and EELS at low primary energies $ , 2010 .

[24]  M. Segall,et al.  Electron and vibrational spectroscopies using DFT, plane waves and pseudopotentials: CASTEP implementation , 2010 .

[25]  K. Suenaga,et al.  Detection of photons emitted from single erbium atoms in energy-dispersive X-ray spectroscopy , 2012, Nature Photonics.

[26]  Christian Kisielowski,et al.  Atomic-scale edge structures on industrial-style MoS2 nanocatalysts. , 2011, Angewandte Chemie.

[27]  R. Fletcher,et al.  A New Approach to Variable Metric Algorithms , 1970, Comput. J..

[28]  M F Crommie,et al.  Direct imaging of lattice atoms and topological defects in graphene membranes. , 2008, Nano letters.

[29]  K. Suenaga,et al.  Core-level spectroscopy of point defects in single layer h-BN. , 2012, Physical review letters.

[30]  S. Pennycook,et al.  Atom-by-atom structural and chemical analysis by annular dark-field electron microscopy , 2010, Nature.

[31]  Graphene reknits its holes. , 2012, Nano letters.

[32]  Ondrej L. Krivanek,et al.  Single atom identification by energy dispersive x-ray spectroscopy , 2012 .

[33]  SUPARNA DUTTASINHA,et al.  Graphene: Status and Prospects , 2009, Science.

[34]  Direct experimental evidence of metal-mediated etching of suspended graphene. , 2012, ACS nano.

[35]  P D Nellist,et al.  Spectroscopic imaging of single atoms within a bulk solid. , 2004, Physical review letters.