A PTAS for weight constrained Steiner trees in series-parallel graphs

In this paper, we study the problem of computing a minimum cost Steiner tree subject to weight constraint in a series?parallel graph where each edge has a nonnegative integer cost and a nonnegative integer weight. We present a strongly polynomial time approximation scheme for this NP-complete problem.

[1]  Guoliang Xue,et al.  K-pair delay constrained minimum cost routing in undirected networks , 2001, SODA '01.

[2]  Ding-Zhu Du,et al.  An approach for proving lower bounds: solution of Gilbert-Pollak's conjecture on Steiner ratio , 1990, Proceedings [1990] 31st Annual Symposium on Foundations of Computer Science.

[3]  Pawel Winter,et al.  Generalized Steiner Problem in Series-Parallel Networks , 1986, J. Algorithms.

[4]  D. Du,et al.  Advances in Steiner trees , 2000 .

[5]  Charles J. Colbourn,et al.  Grade of Service Steiner Trees in Series-Parallel Networks , 2000 .

[6]  Refael Hassin,et al.  Approximation Schemes for the Restricted Shortest Path Problem , 1992, Math. Oper. Res..

[7]  Xiaohua Jia,et al.  A group multicast routing algorithm by using multiple minimum Steiner trees , 1997, Comput. Commun..

[8]  Oscar H. Ibarra,et al.  Fast Approximation Algorithms for the Knapsack and Sum of Subset Problems , 1975, JACM.

[9]  Sartaj Sahni,et al.  General Techniques for Combinatorial Approximation , 1977, Oper. Res..

[10]  David S. Johnson,et al.  Computers and Intractability: A Guide to the Theory of NP-Completeness , 1978 .

[11]  Charles J. Colbourn,et al.  Steiner trees, partial 2-trees, and minimum IFI networks , 1983, Networks.

[12]  Danny Raz,et al.  A simple efficient approximation scheme for the restricted shortest path problem , 2001, Oper. Res. Lett..

[13]  Jon Crowcroft,et al.  Quality-of-Service Routing for Supporting Multimedia Applications , 1996, IEEE J. Sel. Areas Commun..

[14]  Sanjeev Arora,et al.  Polynomial time approximation schemes for Euclidean traveling salesman and other geometric problems , 1998, JACM.

[15]  Arthur M. Farley,et al.  Networks immune to isolated failures , 1981, Networks.

[16]  Ding-Zhu Du,et al.  Grade of Service Steiner Minimum Trees in the Euclidean Plane , 2001, Algorithmica.