A Labelled Graph Based Multiple Classifier System

In general, classifying graphs with labelled nodes (also known as labelled graphs) is a more difficult task than classifying graphs with unlabelled nodes. In this work, we decompose the labelled graphs into unlabelled subgraphs with respect to the labels, and describe these decomposed subgraphs with the travelling matrices. By utilizing the travelling matrices to calculate the dissimilarity for all pairs of subgraphs with the JoEig approach [6], we can build a base classifier in the dissimilarity space for each label. By combining these label base classifiers with the global structure base classifiers built on dissimilarities of graphs considering the full adjacency matrices and the full travelling matrices, respectively, we can solve the labelled graph classification problem with the multiple classifier system.

[1]  Mo Deng-kui Information Identification on QuickBird Image , 2005 .

[2]  Fabio Roli,et al.  Image Analysis and Processing - ICIAP 2005, 13th International Conference, Cagliari, Italy, September 6-8, 2005, Proceedings , 2005, ICIAP.

[3]  Kaspar Riesen,et al.  Graph Classification Based on Dissimilarity Space Embedding , 2008, SSPR/SPR.

[4]  Edsger W. Dijkstra,et al.  A note on two problems in connexion with graphs , 1959, Numerische Mathematik.

[5]  Jordi Inglada,et al.  Automatic recognition of man-made objects in high resolution optical remote sensing images by SVM classification of geometric image features , 2007 .

[6]  Fabio Roli,et al.  Multiple Classifier Systems, 9th International Workshop, MCS 2010, Cairo, Egypt, April 7-9, 2010. Proceedings , 2010, MCS.

[7]  Jon Atli Benediktsson,et al.  Decision Fusion for the Classification of Urban Remote Sensing Images , 2006, IEEE Transactions on Geoscience and Remote Sensing.

[8]  Xiang Li,et al.  The multiple classifiers combination method for improving the accuracy of remotely sensed data classification , 2005, Proceedings. 2005 IEEE International Geoscience and Remote Sensing Symposium, 2005. IGARSS '05..

[9]  Johannes R. Sveinsson,et al.  Multiple classifiers applied to multisource remote sensing data , 2002, IEEE Trans. Geosci. Remote. Sens..

[10]  Russell G. Congalton,et al.  Assessing the accuracy of remotely sensed data : principles and practices , 1998 .

[11]  Subhash C. Bagui,et al.  Combining Pattern Classifiers: Methods and Algorithms , 2005, Technometrics.

[12]  Shi Wen Road Feature Extraction from Remotely Sensed Image:Review and Prospects , 2001 .

[13]  Adam Krzyżak,et al.  Methods of combining multiple classifiers and their applications to handwriting recognition , 1992, IEEE Trans. Syst. Man Cybern..

[14]  Horst Bunke,et al.  Graph Matching - Challenges and Potential Solutions , 2005, ICIAP.

[15]  Horst Bunke,et al.  Edit distance-based kernel functions for structural pattern classification , 2006, Pattern Recognit..

[16]  He Hua-zhon Multiple Features Based Analysis of High-resolution Remotely Sensed Imagery , 2004 .

[17]  Kaspar Riesen,et al.  Classifier Ensembles for Vector Space Embedding of Graphs , 2007, MCS.

[18]  Wan-Jui Lee,et al.  An Inexact Graph Comparison Approach in Joint Eigenspace , 2008, SSPR/SPR.

[19]  Edwin R. Hancock,et al.  Spectral Simplification of Graphs , 2004, ECCV.

[20]  Robert P. W. Duin,et al.  The Dissimilarity Representation for Pattern Recognition - Foundations and Applications , 2005, Series in Machine Perception and Artificial Intelligence.

[21]  Jon Atli Benediktsson,et al.  The effect of classifier agreement on the accuracy of the combined classifier in decision level fusion , 2001, IEEE Trans. Geosci. Remote. Sens..

[22]  Jon Atli Benediktsson,et al.  Multiple Classifier Systems in Remote Sensing: From Basics to Recent Developments , 2007, MCS.

[23]  Abraham Kandel,et al.  Building Graph-Based Classifier Ensembles by Random Node Selection , 2004, Multiple Classifier Systems.

[24]  Robert P. W. Duin,et al.  Is independence good for combining classifiers? , 2000, Proceedings 15th International Conference on Pattern Recognition. ICPR-2000.

[25]  Kaspar Riesen,et al.  IAM Graph Database Repository for Graph Based Pattern Recognition and Machine Learning , 2008, SSPR/SPR.

[26]  Fabio Roli,et al.  Design of effective neural network ensembles for image classification purposes , 2001, Image Vis. Comput..

[27]  David S. Doermann,et al.  Selection of classifiers for the construction of multiple classifier systems , 2005, Eighth International Conference on Document Analysis and Recognition (ICDAR'05).

[28]  Jorma Laaksonen,et al.  Using diversity of errors for selecting members of a committee classifier , 2006, Pattern Recognit..

[29]  R. Duin,et al.  The dissimilarity representation for pattern recognition , a tutorial , 2009 .

[30]  Robert P. W. Duin,et al.  A Matlab Toolbox for Pattern Recognition , 2004 .

[31]  Ludmila I. Kuncheva,et al.  Combining Pattern Classifiers: Methods and Algorithms , 2004 .