Linear stability and resonances in the generalized photogravitational Chermnykh-like problem with a disc

[1]  B. S. Kushvah,et al.  Periodic orbits in the generalized photogravitational Chermnykh-like problem with power-law profile , 2012, 1212.4599.

[2]  B. S. Kushvah,et al.  Existence of equilibrium points and their linear stability in the generalized photogravitational Chermnykh-like problem with power-law profile , 2011, 1107.5390.

[3]  B. S. Kushvah Linear stability of equilibrium points in the generalized photogravitational Chermnykh’s problem , 2008, 0806.1132.

[4]  I. Jiang,et al.  On the Chermnykh-Like Problems: II. The Equilibrium Points , 2006, astro-ph/0610767.

[5]  I. Jiang,et al.  On the Chermnykh-Like Problems: I. the Mass Parameter μ = 0.5 , 2006, astro-ph/0610735.

[6]  B. S. Kushvah,et al.  Linear Stability of Triangular Equilibrium Points in the Generalized Photogravitational Restricted Three Body Problem with Poynting_Robertson Drag , 2006, math/0602467.

[7]  K. E. Papadakis Motion Around The Triangular Equilibrium Points Of The Restricted Three-Body Problem Under Angular Velocity Variation , 2005 .

[8]  K. E. Papadakis Numerical Exploration of Chermnykh’s Problem , 2005 .

[9]  I. Jiang,et al.  The drag-induced resonant capture for Kuiper Belt objects , 2004, astro-ph/0410426.

[10]  I. Jiang,et al.  On the Chaotic Orbits of Disk-Star-Planet Systems , 2004, astro-ph/0404408.

[11]  I. Jiang,et al.  Dynamical Effects from Asteroid Belts for Planetary Systems , 2003, Int. J. Bifurc. Chaos.

[12]  W. Ip,et al.  The planetary system of upsilon Andromedae , 2000, astro-ph/0008174.

[13]  J. Lissauer,et al.  Stability Analysis of the Planetary System Orbiting υ Andromedae , 2001 .

[14]  A. Maciejewski,et al.  Unrestricted Planar Problem of a Symmetric Body and a Point Mass. Triangular Libration Points and Their Stability , 1999 .

[15]  Krzysztof Goździewski,et al.  Nonlinear Stability of the Lagrangian Libration Points in the Chermnykh Problem , 1998 .

[16]  K. E. Papadakis,et al.  Non-linear stability zones around triangular equilibria in the plane circular restricted three-body problem with oblateness , 1996 .

[17]  G. Pucacco,et al.  Theory of Orbits , 1996 .

[18]  U. Gupta,et al.  Effect of perturbed potentials on the non-linear stability of libration pointL4 in the restricted problem , 1994 .

[19]  O. Ragos,et al.  On the existence of the “out of plane” equilibrium points in the photogravitational restricted three-body problem , 1993 .

[20]  C. Marchal Predictability, Stability and Chaos in Dynamical Systems , 1991 .

[21]  M. P. Strand,et al.  Semiclassical quantization of the low lying electronic states of H2 , 1979 .

[22]  R. Sharma,et al.  Stationary solutions and their characteristic exponents in the restricted three-body problem when the more massive primary is an oblate spheroid , 1976 .

[23]  A. Deprit,et al.  STABILITY OF THE TRIANGULAR LAGRANGIAN POINTS , 1967 .