Signal Processing Causal discrete-time system approximation of non-bandlimited continuous-time systems by means of discrete prolate spheroidal wave functions
暂无分享,去创建一个
[1] H. Pollak,et al. Prolate spheroidal wave functions, fourier analysis and uncertainty — III: The dimension of the space of essentially time- and band-limited signals , 1962 .
[2] Alfred Voglgsang,et al. Modell für Nebensprechstörungen auf xDSL-Leitungen und dessen praktische Umsetzung , 2004 .
[3] Don M. Gruenbacher,et al. A simple algorithm for generating discrete prolate spheroidal sequences , 1994, IEEE Trans. Signal Process..
[4] T. Zemen,et al. Time-variant channel estimation using discrete prolate spheroidal sequences , 2005, IEEE Transactions on Signal Processing.
[5] I. M. Jacobs,et al. Principles of Communication Engineering , 1965 .
[6] D. Slepian. Prolate spheroidal wave functions, fourier analysis, and uncertainty — V: the discrete case , 1978, The Bell System Technical Journal.
[7] Christoph F. Mecklenbräuker,et al. Minimum-Energy Band-Limited Predictor With Dynamic Subspace Selection for Time-Variant Flat-Fading Channels , 2007, IEEE Transactions on Signal Processing.
[8] D. Slepian. Prolate spheroidal wave functions, Fourier analysis and uncertainty — IV: Extensions to many dimensions; generalized prolate spheroidal functions , 1964 .
[9] Alan V. Oppenheim,et al. Discrete-time signal processing (2nd ed.) , 1999 .
[10] D. Slepian,et al. Prolate spheroidal wave functions, fourier analysis and uncertainty — II , 1961 .
[11] Alan V. Oppenheim,et al. Discrete-Time Signal Pro-cessing , 1989 .
[12] Craig Valenti. NEXT and FEXT models for twisted-pair North American loop plant , 2002, IEEE J. Sel. Areas Commun..
[13] Aaron D. Wyner. An analog scrambling scheme which does not expand bandwidth, Part I: Discrete time , 1979, IEEE Trans. Inf. Theory.
[14] D. Tufts,et al. Designing digital low-pass filters--Comparison of some methods and criteria , 1970 .