Detecting Brain State Changes by Geometric Deep Learning of Functional Dynamics on Riemannian Manifold

[1]  Alessandro Laio,et al.  Clustering by fast search and find of density peaks , 2014, Science.

[2]  Yi Lin,et al.  Detecting Changes of Functional Connectivity by Dynamic Graph Embedding Learning , 2020, MICCAI.

[3]  B. Biswal,et al.  Functional connectivity in the motor cortex of resting human brain using echo‐planar mri , 1995, Magnetic resonance in medicine.

[4]  Zhengwu Zhang,et al.  Analyzing Dynamical Brain Functional Connectivity as Trajectories on Space of Covariance Matrices , 2020, IEEE Transactions on Medical Imaging.

[5]  Martin A. Lindquist,et al.  Dynamic connectivity regression: Determining state-related changes in brain connectivity , 2012, NeuroImage.

[6]  Yong Fan,et al.  Identification of Temporal Transition of Functional States Using Recurrent Neural Networks from Functional MRI , 2018, MICCAI.

[7]  Nicholas Ayache,et al.  Geometric Means in a Novel Vector Space Structure on Symmetric Positive-Definite Matrices , 2007, SIAM J. Matrix Anal. Appl..

[8]  Fenna M. Krienen,et al.  Opportunities and limitations of intrinsic functional connectivity MRI , 2013, Nature Neuroscience.

[9]  Yong Fan,et al.  Large-scale sparse functional networks from resting state fMRI , 2017, NeuroImage.

[10]  Massimo Filippi,et al.  Resting State Dynamic Functional Connectivity in Neurodegenerative Conditions: A Review of Magnetic Resonance Imaging Findings , 2019, Front. Neurosci..

[11]  Martin A. Lindquist,et al.  Dynamic connectivity detection: an algorithm for determining functional connectivity change points in fMRI data , 2015, Front. Neurosci..

[12]  Abraham Z. Snyder,et al.  Function in the human connectome: Task-fMRI and individual differences in behavior , 2013, NeuroImage.

[13]  Xenophon Papademetris,et al.  Groupwise whole-brain parcellation from resting-state fMRI data for network node identification , 2013, NeuroImage.