Controller and observer design for Lipschitz nonlinear systems

We consider three related problems for stabilization of a class of Lipschitz nonlinear systems: (1) full-state feedback controller design, (2) observer design, and (3) output feedback controller design. Sufficient conditions are developed for the design of an exponentially stable linear full-state feedback controller and an exponentially stable nonlinear observer. Given that the sufficient conditions of the controller and observer problem are satisfied, we show that the proposed controller with estimated state feedback from the proposed observer will achieve exponential stabilization. Simulation results on an example are given to numerically verify the proposed designs.

[1]  F. Thau Observing the state of non-linear dynamic systems† , 1973 .

[2]  Thomas Kailath,et al.  Linear Systems , 1980 .

[3]  Arthur J. Krener,et al.  Linearization by output injection and nonlinear observers , 1983 .

[4]  D. Bestle,et al.  Canonical form observer design for non-linear time-variable systems , 1983 .

[5]  F Rikus Eising,et al.  Between controllable and uncontrollable , 1984 .

[6]  A. Krener,et al.  Nonlinear observers with linearizable error dynamics , 1985 .

[7]  Daniel Boley,et al.  Measuring how far a controllable system is from an uncontrollable one , 1986, IEEE Transactions on Automatic Control.

[8]  M. Spong Modeling and Control of Elastic Joint Robots , 1987 .

[9]  S. Żak,et al.  Comparative study of non-linear state-observation techniques , 1987 .

[10]  R. Byers A Bisection Method for Measuring the Distance of a Stable Matrix to the Unstable Matrices , 1988 .

[11]  J. Tsinias A theorem on global stabilization of nonlinear systems by linear feedback , 1991 .

[12]  R. Decarlo,et al.  Computing the distance to an uncontrollable system , 1991 .

[13]  R. Marino,et al.  Dynamic output feedback linearization and global stabilization , 1991 .

[14]  J. Gauthier,et al.  A simple observer for nonlinear systems applications to bioreactors , 1992 .

[15]  A. Germani,et al.  A Luenberger-like observer for nonlinear systems , 1993 .

[16]  W. Dayawansa,et al.  Global stabilization by output feedback: examples and counterexamples , 1994 .

[17]  A. Teel,et al.  Tools for Semiglobal Stabilization by Partial State and Output Feedback , 1995 .

[18]  H. Khalil,et al.  A separation principle for the stabilization of a class of nonlinear systems , 1997 .

[19]  C. Kravaris,et al.  Nonlinear observer design using Lyapunov's auxiliary theorem , 1997, Proceedings of the 36th IEEE Conference on Decision and Control.

[20]  R. Rajamani Observers for Lipschitz nonlinear systems , 1998, IEEE Trans. Autom. Control..

[21]  R. Rajamani,et al.  Existence and design of observers for nonlinear systems: Relation to distance to unobservability , 1998 .

[22]  Wang Zicai Observer Design for a Class of Nonlinear Systems , 1998 .

[23]  J. Tsinias Backstepping design for time-varying nonlinear systems with unknown parameters , 2000 .

[24]  Hassan K. Khalil,et al.  A separation principle for the control of a class of nonlinear systems , 2001, IEEE Trans. Autom. Control..

[25]  Laurent Praly,et al.  On certainty-equivalence design of nonlinear observer-based controllers , 2002, Proceedings of the 41st IEEE Conference on Decision and Control, 2002..

[26]  G. Sallet,et al.  Observers for Lipschitz non-linear systems , 2002 .

[27]  Wei Lin,et al.  Output feedback control of a class of nonlinear systems: a nonseparation principle paradigm , 2002, IEEE Trans. Autom. Control..